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Abstract—The paper presents a features for detection of
pathological changes in acoustic speech signal for the diagnosis
of the bulbar form of Amyotrophic Lateral Sclerosis (ALS). We
collected records of the running speech test from 48 people, 26
with ALS. The proposed features are based on joint analysis of
different vowels. Harmonic structure of the vowels are also taken
into consideration. We also presenting the rationale of vowels
selection for calculation of the proposed features. Applying this
features to classification task using linear discriminant analysis
(LDA) lead to overall correct classification performance of 88.0%.

Index Terms—speech analysis, formants, ALS.

I. INTRODUCTION

Perceptible changes in speech are inherent to many neu-
rological diseases. Bulbar motor changes (i.e. difficulty with
speech or swallowing) are the first symptoms in approximately
30% of persons with amyotrophic lateral sclerosis (ALS) [1].
In most cases detection of speech motor involvement in ALS
currently are based on subjective assessment of clinicians’
auditory perceptions. However auditory-perceptual judgment
as a tool for classifying speech disorders are susceptible to
a variety of sources of error and bias [2]. Some symptoms
of speech motor changes in ALS cannot be easily detected
without instrumentation [3] especially at the beginning of the
disease. In turn, late detection of voice pathology can lead
to late detection of ALS. Advanced assessment strategies of
speech motor changes are needed for early disease detection
and optimizing the efficacy of therapeutic ALS drug trials [4].

One of the problem of ALS detection is there is no standard-
ized speech diagnostic procedure. For detecting neurological
diseases many vocal test have been proposed. Some of them
include sustained phonations [5, 6], where the patient is
instructed to produce a single vowel and hold the pitch of
it as constant as possible, for as long as possible. In running
speech tests patients are instructed to speak a standard sentence
that is constructed to contain a representative sample of
linguistic units [7]. Another approach is to use rapid repetitions
of syllables, which is referred to as a diadochokinetic task
(DDK). During this speaking test patients are asked to produce
the maximum number of syllable (e.g., “tah” or “pah”) as
rapidly and accurately as possible in a single breath [1].

Currently for detecting neurological diseases using vocal
tests different time, frequency or time-frequency features are
used. They are extracted form the speech signal using either
linear or non-linear processing techniques. Features based on
linear processing include F0 (the fundamental frequency of

vocal oscillation), absolute sound pressure level, harmonics-to-
noise ratio (HNR) [8], jitter (the degree of variation of F0 from
cycle to cycle), shimmer (the degree of variation in speech
amplitude from cycle to cycle) [7], Mel-frequency cepstral
coefficients (MFCC) [9]. The main drawback of the mentioned
features is that many of them does not specifically designed for
detection of voice disorders and therefore their performance is
limited. Also they can be well applied to sustained phonation
test but not to running speech test.

More recently, several new measurement methods have been
proposed to assess dysphonic symptoms in speech [6]. Those
methods are based on nonlinear time series analysis. The most
popular among them detrended fluctuation analysis (DFA) and
recurrence period density entropy (RPDE) [7]. The drawback
of the nonlinear measurement methods is their much higher
sensitivity to noise and other environmental factors.

As a rule all extracted feature vectors with corresponding la-
bels are used to obtain classifier based on supervised learning.
Linear discriminant analysis (LDA) along with support vector
machine (SVM) are the most frequently used classification
tools in tasks of neurological diseases diagnosis [6, 9, 10].

The aim of this work is to present new features that based on
linear processing techniques and designed specially for detect-
ing dysphonic/dysathic speech pathology of patients with ALS.
The proposed features are robust to uncontrolled variation in
acoustic environment, have clear rationale and possibly can
be used in telemedicine systems. Using the proposed features
classifier for the diagnosis of ALS based on LDA have been
obtained.

II. FOUNDATION OF VOWELS SELECTION

The ALS results in changes of the stimulation of the
muscles in general and the muscles of the tongue in particular.
The position of the tongue’s surface is manipulated by large
and powerful muscles in its root, which move it within
the mouth [11]. From the speech production point of view
important horizontal position of the tongue surface (front ⇔
back) and vertical position (high ⇔ low). Fig. 1 shows a
schematic characterization of some Russian vowels in terms
of relative tongue positions.
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Fig. 1: Relative tongue positions of Russian vowels (in Inter-
national Phonetic Alphabet (IPA) representation) [11]

For detecting symptoms of bulbar form of ALS from the
acoustic speech signal, it is advisable to select the vowels /æ/
and /i/, since for their pronouncing requires a considerable
activity of tongue muscles.

In our experiments we use running speech as more realistic
test of impairment in actual everyday life. Records with
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counting form 1 to 10 (in Russian) were used as a materials for
experiments. For the analysis we have selected close in time
fragments of speech signal containing the vowels /æ/ and /i/,
(as a rule, sounds were selected from the words “odin”, “dvæ”,
“tri”). An example of the formant structure of vowels /æ/ and
/i/, produced by a healthy person is shown in Fig. 2.
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Fig. 2: Formant structure of the vowels /æ/ and /i/ (healthy
person)

Visual analysis of envelopes in Fig. 2 shows that formants
significantly spaced in frequency domain and are arranged in
the following order: Fi(1) < Fa(1) < Fa(2) < Fi(2). As
a rule pathological changes in speech are perceived aurally
therefore it is meaningful to use psychoacoustically motivated
Bark scale for improving correlation between perceptual and
acoustic data [2]. As it will be shown in the following
convergence of the formants can mean existence of patholog-
ical abnormalities. In this regard, Bark scale allows to unify
distance between firsts and seconds formants of the vowels /æ/
and /i/.

III. FEATURES FOR AUTOMATIC DETECTION

A. Distance between envelopes

Joint analysis of envelopes of vowels /æ/ and /i/ of persons
with ALS have revealed an increased similarity between the
shapes of these envelopes. A typical example of envelopes
with a high degree of similarity is given in Fig. 3.

Fig. 3: Similarity of the envelope sounds /æ/ and /i/ (for patient
with ALS)

To quantify the differences between the envelopes of vowels
/æ/ and /i/ it is suggested to use the l1-norm distance measure

d1(Ei, Ea) =

P∑
k=1

|Ei(k)− Ea(k)|, (1)

where Ei(k) is envelope of the vowel /i/, Ea(k) – envelope of
the vowel /æ/, P – the number of points in the Bark frequency
domain in which envelope is defined.

B. Mutual location of the formant frequencies

As mentioned in section II formants of vowels /æ/ and /i/
have fixed order in normal case. However, in patients with ALS
mutual location of the formant frequencies can be violated.
Fig. 4 shows an example of the envelopes of vowels /æ/ and
/i/, pronounced by a patient with ALS (voice disorder was
perceivable).
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Fig. 4: Abnormal mutual location of the formant frequencies
in patient with ALS

In the case when the normal order is not violated, there is
often a significant convergence of the formant frequencies as
shown in Fig. 5.

To quantify the degree of violation of the mutual formant
structure of vowels /æ/ and /i/ feature fmterr(Fi, Fa) is
proposed (see eq. (2)). This expression returns value in the
range [0, 2]. The fmterr is equal to 2 when the normal mutual
formant structure is violated (i.e. either Fi(1) > Fa(1), or
Fa(2) > Fi(2)). For normal mutual formant location fmterr
returns 0. It has been noticed that the distance between the
formants of vowels /æ/ and /i/ for healthy person is more than
2 Bark, therefore the degree of convergence of the formants
is estimated by the function fmterr(Fi, Fa) in cases when
distance between the first formants and/or between the second
formants of vowels /æ/ and /i/ are less than 2 Barks.

C. Difference in the amplitudes of the harmonics.

Analysis of harmonic structure of vowel /æ/ in persons with
ALS have revealed that disphonic disorders have affect on fist
three harmonic components. Fig. 6 and Fig. 7 shows some
representative examples.

To quantify the degree of deviation in amplitude structure
of harmonics of vowels /æ/ the following measure is proposed

harmdiff (A1, A2, A3) = max(A1, A2)−A3, (3)

where Ai – amplitude of i-th harmonic in dB.
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fmterr(Fi, Fa) =



2 if Fi(1) > Fa(1) or Fa(2) > Fi(2)

2− Fa(1)−Fi(1)
2 − Fi(2)−Fa(2)

2 , if Fa(1)− Fi(1) < 2 and Fi(2)− Fa(2) < 2

1− Fa(1)−Fi(1)
2 , if Fa(1)− Fi(1) < 2

1− Fi(2)−Fa(2)
2 , if Fi(2)− Fa(2) < 2

0, otherwise

(2)

2 4 6 8 10 12 14 16 18
Frequency, Bark

-10

0

10

20

30

A
m

p
li

tu
d
e
, 

d
B

\aa\
\iy\

0.95 Bark

Fig. 5: Convergence of formant frequencies of the vowels /æ/
and /i/ (patient with ALS)
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Fig. 6: First three harmonics of vowel /æ/ (ALS patient).
Difference between amplitudes of 1st and 3rd harmonic is 31
dB

IV. CLASSIFICATION

A. Scheme for features extraction

General scheme for features extraction for automatic de-
tection of bulbar ALS is given in in Fig. 8. For the anal-
ysis, segments of speech signal with a duration of 150-
200 msec containing vowels /æ/ and /i/ were selected. LP-
analysis is done using traditional algorithms, while harmonic
analysis is performed using technique described in [12].
For each pair of vowels from the dataset features (1), (2)
and (3) are extracted and concatenated into vector x =
[d1(Ei, Ea) fmterr (Fi, Fa) harmdiff (A1, A2, A3)]

T .

B. Linear discriminant analysis

In order to discriminating between the two classes of
normal and pathological cases, linear discriminant analysis
(LDA) with Fisher criterion was used [13]. The idea of linear
discriminant analysis (LDA) lies in the search for such a
hyperplane w in the feature space, so that the projection of
all training vectors onto it minimizes the within-class variation
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Fig. 7: First three harmonics of vowel /æ/ (ALS patient).
Difference between amplitudes of 2nd and 3rd harmonics is 12
dB
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Fig. 8: Scheme of speech signal analysis

and maximizes the between-class variation:

w = argmax
w

wSBwT

wSW wT
, (4)

where SB – between class scatter matrix and SW – within
class scatter matrix. In turn these matrices are calculated as
follows

SB = (µ1 − µ2)(µ1 − µ2)
T , (5)

SW =

2∑
j=1

∑
x

(x− µj)(x− µj)
T (6)

where µ1 – mean value of feature vector for healthy people
and µ2 – mean value of feature vector for people with ALS.
The solution of (4) can be found via the generalized eigenvalue
problem

SBw = λSW w, (7)

where the maximum eigenvalue λ and its associated eigen-
vector gives the quantity of interest and the projection basis.
More detailed description of LDA is given in [13].
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V. EXPERIMENTAL RESULTS

A. Data collection

To validate proposed new features, real world clinical sam-
ples were used. Speech recording of Russian speaking patients
with ALS was carried out in Republican Research and Clinical
Center of Neurology and Neurosurgery (Minsk, Belarus). A
total of 48 speakers were recorder, with 22 healthy speakers
(15 males, 7 females) and 26 speakers (14 males, 12 females)
having been diagnosed with ALS. The average age in the
healthy group was 36.3 years (SD 9.5, Min 22, Max 81)
and the average age in the ALS group was 56.5 years (SD
10.5, Min 36, Max 82). The samples recorded at 44.1 kHz
using smartphone with a standard headset and stored as 16 bit
uncompressed PCM files.

For classification purpose 106 pairs of vowels /æ/ and /i/
were manually pre-segmented prior to feature extraction (61
– healthy, 45 – pathology).

B. Statistical analysis of features

In order to gain a preliminary understanding of the statis-
tical properties of the features we compute their distributions
estimated using Gaussian kernel density.

Figure 9 shows the density function for distance between
envelopes d1(). This feature shows a considerable distinction
between healthy controls and people with ALS.

Fig. 9: Probability density of distance between envelopes
d1(Ei, Ea)

The probability density of fmterr feature is shown in
Fig. 10. This results show that there are violations of mutual

Fig. 10: Probability density for fmterr (Ei, Ea)

location of the formant frequencies for some samples from
healthy control group. However, this could appear due to
inaccuracy of algorithm of formant frequencies detection.

The feature harmdiff is also shows a good separation
between healthy and pathological groups (Fig.11).

Fig. 11: Probability density for difference between harmonic
amplitudes harmdiff

For comparison reason we have computed a density function
for widely used HNR feature (Fig. 12). Although HNR is

Fig. 12: Probability density for HNR computed for vowel /æ/
taken from running speech test

quite effective for sustained phonation test [7] it is not so
good when used for analysis of short vowels (<200 ms).

C. Classification results

Using collected base of 106 train samples LDA was per-
formed based on the following steps:
− Between class scatter matrix SB calculation using (5);
− Within class scatter matrix SB calculation using (6);
− Solving the eq. (7) by calculating matrix S−1

WSB and
performing its eigenvalue decomposition. To maximize
Fisher’s criterion (4) projection hyperplane w is deter-
mined by eigenvector associated with maximum eigen-
value λ.

Classification is performed using following equation

p = sign(wTx− b) (8)

where b is boundary, if p = −1 then vector x classified as
healthy, if p = 1 then vector x classified as pathology.
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Fig. 13: Probability density function for projection on hyper-
plane w of all train vectors

In Fig. 13 kernel density function for projection on hy-
perplane of all train vectors is shown. Overall classification
accuracy is equal to 88.0%, true positive 90.5% and true
negative 84.6%.

VI. CONCLUSION

The paper presents a several new features that can be
calculated form running speech test for ALS diagnosis. New
features are based on 1) analysis of envelopes of vowels /æ/
and /i/ and 2) analysis of mutual formant structure of vowels
/æ/ and /i/. The vowels /æ/ and /i/ were selected as the most
suitable because their pronouncing requires a considerable
work of tongue muscle (the bulbar symptoms of ALS include
tongue atrophy). Another one feature is based on analysis of
harmonic structure of vowel /æ/, the statistical analysis have
shown that for pathological cases difference between first two
and third amplitudes of harmonics lager then in healthy control
group. Further work is necessary to improve classification
result. Usage of presented feature with LDA-based classier
allows to achieve overall classification accuracy of 88%.
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