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1.  Introduction.                       
A polyphase representation of maximally decimated M-channel filter bank: 
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where ( )zE  and ( )zR  are analysis and synthesis transfer matrices respectively. 

 
   Biorthogonal filter bank (BOFB): 1( ) ( 0, 0) ,z z bz lb   R E I . 
   Paraunitary filter bank (PUFB):  1( ) ( )T z z  E E I and 1( ) ( )Tz zR E . 



 

 

2.  The main objective of this work             
   
  One-dimensional linear phase PUFB’s can be applied to the construction of 

multidimensional separable systems. 2-D signals (images) are separately 
transformed along vertical and horizontal directions.  

  However, multidimensional signals are generally non-separable, and this 
approach does not exploit their characteristics effectively. 

  2-D non-separable filter banks (FBs) more effective for image coding than 
separable FBs, because they take into account the 2-D nature of the input signal 
and have better frequency characteristics. 

  The research goal is factorization of 2-D non-separable quaternionic 
paraunitary filer bank (2-D-NSQ-PUFB) and finite-precision FPGA 
implementation for L2L image coding. 
  



 

 

3.  Separable 2-D transform                 
 The 2-D transform based on the orthogonal transform ( ),n n  applied to 2D input 
signal ( ),n nx  separately by column and row1:  

T
, , , ,ꞏ ꞏn n n n n n n ny Θ x Θ  

Intermediate result T
, ,ꞏn n n nx Θ  require additional memory of size ,n n. 

Example for 4-channel FB 
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1 N. A. Petrovsky, E. V. Rybenkov and A. A. Petrovsky, "Two-dimensional non-separable quaternionic paraunitary filter banks," 2018 Signal 
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, 2018, pp. 120-125. doi: 10.23919/SPA.2018.8563311. 



 

 

4.  Memory-efficient high-throughput 2-D filter banks     
Definition 1 ( forward transform ):   2 ,,1

tv   n nn
x x : 

tvT

1,1 1, ,1 , ,x x x x xn n n n n n          

Definition 2 ( forward transform of the transposed matrix ):  2
T

,,1
tv   n nn

z x : 

tvT T

1,1 ,1 1, , ,x x x x xn n n n n n          

 The vectors 2 ,1n
z , 2 ,1n

x  and matrix ,n nx  are related as follows:  

   2 2
T

, ,,1 ,1
tv   ꞏtv   ꞏn n n nn n

  z x P x P x  

where P is permutation matrix of size 2 2( )n n , which perform transpose in 
vector-matrix form.  



 

 

5.  Memory-efficient high-throughput 2-D filter banks     
 The factorization of memory efficient transform: 

    2 2
2 2 2,,1 ,1 ,1

ꞏ ꞏ ꞏ ꞏ ꞏn nn n n



 y Θ P Θ P x Θ xD D  

    ,diag , , n n n   Θ Θ Θ ΘD I  

where  is Kronecker product; 2 2,n n



Θ  is 2-D transformation matrix. 

 The factorization of 2-D separable M -channel FB ( 4M  ) with polyphase 
matrix ( )zE : 

   2 2,1 ,1
( ) ꞏ ꞏ ( ) ꞏ ꞏ

M M
z zy E P E P xD D  

 2-D separable FB work with a signal of size ( )M M .  



 

 

6.  Hypercomplex algebra                  
The Quaternion algebra 
The quaternion algebra � is an associative non-commutative four-dimensional algebra 

1 2 3 4 1 2 3 4{ q | , , , },q i q j q k q q q q     q �  where the orthogonal imaginary numbers obey the 
following multiplicative rules2: 2 2 2 1i j k ijk     ,ij ji k   , jk kj i   ,ki ik j    

Multiplications by fixed coefficients of unit norm quaternions expected 2 2 2 2
1 2 3 4 1q q q q q      

The polar form quaternion is ,i j kq q e e e    where 2 2 2 2, , .                 

Quaternion multiplication can be determined in matrix notation 
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Two different multiplication matrices: the left-operand one ( ) M , and the right-operand ( ) M , which 
related following way: C C( ) ,( )q qM D M D  where 3C diag(1, ) D I  – hypercomplex conjugate in 
matrix notation.  

                                                      
2 I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers: an Elementary Introduction to Algebras. New York,  NY: Springer, 1989. 



 

 

7.  A quaternionic structure of 4-channel PMI LP PUFB        
  Factorization of 4-channel quaternionic linear phase filter 
bank PMI LP PUFBs ( ( )zE  is analysis transfer matrix )3: 

 1
0 /2 /21

1( ) ( ) diag( , );
2i M Mi N

z z
 

  E G W I J  

1( ) ( ) ,  1,..., 1;
2i iz z i N    G W W   

2 2

2 2

;
 

   

I I
W

I I
   1

2 2( ) diag( , );z zΛ I I  

 ;i iPM     1 1 /2 /2 /2diag( , ).N N M M MP
   M J Γ I  

 
 
where N  is order of the factorization; /2MI  and /2MJ  denote the 
( / 2) ( / 2)M M  identity and reversal matrices, respectively; /2MΓ  is diagonal 
matrix the elements of which are defined as 1γ ( 1) ,  1, 1.m
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3 M. Parfieniuk and A. Petrovsky, “Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion 
multipliers,” Signal Process., vol. 90, pp. 1755–1767, 2010. 



 

 

8.  2-D non-separable PMI LP PUFB             
 A factorization of Q-PUBF is applied to a 2-D input signal: 

       T T T T
, , 1 1 0 , 0 1 1ꞏ ꞏ z ꞏ ꞏ z ꞏ ꞏ ꞏ ꞏ z ꞏ ꞏ zn n n n N n n N    y E E G G E E G Gx x  

 
 Sequence of matrix replacement for PMI LP Q-PUFB: 

   T T T
, 0 /2 /2 , /2 /2 0...ꞏ ꞏ ꞏdiag , ꞏ ꞏdiag , ꞏ ꞏ ꞏn n M M n n M M y Φ W I J x I J W Φ  

 
 2D non-separable PMI LP Q-PUFB: 

       2 201 2 1ꞏ ,1,1 ,1
ꞏ z ꞏ z ꞏ ꞏ z ꞏ ꞏN Nn nn n

z    y E x G G G E x
    

 

     0 0 /2 /2 /2 /2
1ꞏ ꞏ ꞏ diag , ꞏ ꞏ diag , ꞏ
2 M M M ME Φ W I J P I J P

  
D D  

 1ꞏ ꞏ ꞏ ꞏ
4

i zG Φ WΛ W
    

i . 

where  denotes the 2-D transformation matrix. 



 

 

9.  2-D non-separable 4-channel PMI LP PUFB       
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10.  Block Lifting factorization of           
The left-operand multiplication matrix ( )qM  can be of the following structure4: 

                 1
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 The quaternion multiplication as integer-to-integer operator: 
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4 M. Parfieniuk and A. Petrovsky, “Quaternion multiplier inspired by the lifting implementation of plane rotations,” IEEE Trans. Circuits 
Syst. I, vol. 57, no. 10, pp. 2708–2717, Oct. 2010. 



 

 

11.  Controlling the dynamic range of lifting coefficients 
The use of the ladder circuit parameterization increases the dynamic range of the 
matrix coefficients, and that is unacceptable for fixed-point arithmetic. Bringing the 
parameters of the multiplier to the required dynamic range can be achieved if the 
quaternion multiplication operator selected according to the following equation5: 
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5 M. Parfieniuk and A. Petrovsky, “Quaternion multiplier inspired by the lifting implementation of plane rotations,” IEEE Trans. Circuits 
Syst. I, vol. 57, no. 10, pp. 2708–2717, Oct. 2010. 



 

 

12.  Universal quaternion multiplier            
In order to unify the quaternion multiplier structure, only left multiplication ( )QΜ  can be 
used, to adjust it to the required multiplication operator ( )QΜ , ( )QΜ  or ( )QΜ : 

Rule Target op. Modification rule for Q  

1  QM  
pre preP P  post postP P  

F F  G G  H H  

2  QM  
T

pre postP P  T
post preP P  

 F H   G G   H F  

3  QM  
  T

pre post cP P D    T
post c preP D P  

 F H   G G   H F  

4  QM  
 pre pre c P P D   post c post P D P  

F F  G G  H H  



 

 

13. Pipeline structure of the integer Q-MUL multiplier   
 An effective method for matrix multiplication H  can be formulated in the terms 
of the adder-based distributed arithmetic following way:  
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where ir  are inner products  between a fixed coefficients of the block-lifting 
step ( )QV  and a variable vector data  1 2

T
i x xx  or  3 4

T
j x xx  ; 

{ } {0,1}t
ijh   are binary coefficients elements of the matrix H in 

2’s-complement code; ij  – element idex; t – bit position;  
 1L B   – less significant bit position; B – word length;  

{0}
ijh  – sign bit; Ts  – signal of sign bit. 
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14. Pipelined embedded processor for multiplying quaternions 
 The same expression can be 

obtained for 2r  using second row of 
matrix H and stages ( )QL  and ( )QU . 
 The result formation take B  clock 

cycles for all stages (where B  is word 
length). 
 The pipeline latency of Q-MUL is 3B

clock cycles. 
 The performance of pipeline is 

/CLKf B  quaternion multiplication per 
second. 

The architecture of pipelined embedded processor 
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15. Experimental results                   
Magnitude responses of 2-D NS Q-PUBF. 

    
(1,1) (2,2) (3,3) (4,4) 

    
(5,5) (6,6) (7,7) (8,8) 

 The coding gains MDCG  of 2-D non-separable PMI LP Q-PUFB for the isotropic autocorrelation function 
with the correlation factor   = 0.95 are ( 4)MDCG dB M 13.4  ; ( 8)MDCG dB M 17.15 . 



 

 

16. Experimental results                   
              FPGA resource utilization of Q-MUL.                                   Total magnitude response of                      

               Xilinx ZYNQ xc7z020-1-CLG484                                     analysis-synthesis system [ dB ]. 
Slice Registers 759  

 

Slice LUTs 560  
Clock period frequency 280 MHz  
Q-MUL coefficients precision 8 Bits  
Input data word length 16 Bits  

   

Conclusion 
 The 2-D-NSQ-PUFB based on the given Q-MUL is a perfect reconstruction filter bank for finite  

precision, compared to known separable solutions it have less implementation complexity, higher 
coding gain and stopband attenuation. 

 The proposed Q-MUL is versatile, which allows using only  QM  left multiplication matrix. 
 The latency of parallel-pipeline processing does not depend on the size of the original image. 


