SCALABLE PARAMETRIC AUDIO CODER **USING SPARSE APPROXIMATION WITH** FRAME-TO-FRAME PERCEPTUALLY **OPTIMIZED WAVELET PACKETE BASED** DICTIONARY

Convention paper 9264

Al. Petrovsky, V. Herasimovich, A. Petrovsky Department of Computer Engineering, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus

Introduction 1.

Presented work describes a new algorithm of parametric audio coding based on sparse approximation that used matching pursuit (MP) algorithm with optimized wavelet packet (WP) dictionary.

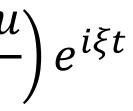
Main features are:

- High quality of reconstructed audio signal;
- Low speed rate of audio data transmission;
- Algorithm scalability to audio data coding;
- Universality for different nature of audio signals.

Main ideas of research are:

- Using MP algorithm as a core of encoder;
- Psychoacoustic optimized of time-frequency functions dictionary;
- WP single transform domain.

MP Using WP Dictionary 2.

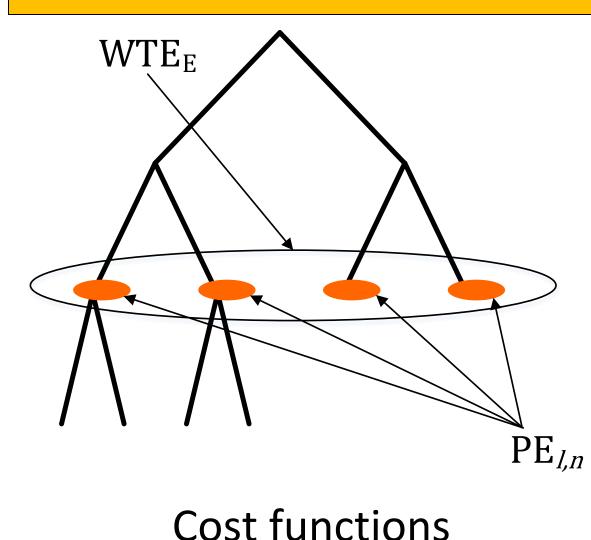

Common MP procedure¹

signal approximation
$$\checkmark x(t) = \sum_{n=0}^{\infty} a_n g_{\gamma_n}(t)$$

window function $\blacklozenge g_{\gamma}(t) = \frac{1}{\sqrt{s}} g\left(\frac{t-u}{s}\right)$

where s – scale, ξ – frequency modulation, u – translation.

WP based dictionary of time-frequency functions


where l - WP tree level number, n - tree node number.

$L, 0 \le n \le 2^{l}$

¹ S. Mallat, Z. Zang, "Matching Pursuits with Time-Frequency Dictionaries", IEEE Transactions on signal processing, vol. 41, pp. 3397-3415 (1993 December).

Adaptive WP Decomposition 3.

Adaptation cost functions:

Wavelet time entropy estimation

$$WTE_{E_i} = -\sum_{\forall (l,n) \in E_i} \sum_{k} \frac{|X_{l,n,k}|}{\sum_{\forall (l,n) \in E_i} |X_{l,n,k}|}$$

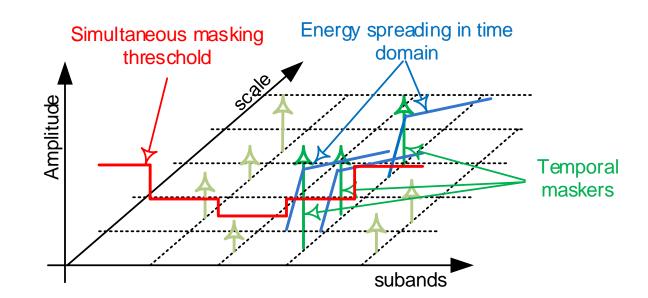
Perceptual entropy estimation

$$PE_{l,n} = \sum_{k=1}^{K_{l,n}-1} \log_2(2[nint(SN)])$$

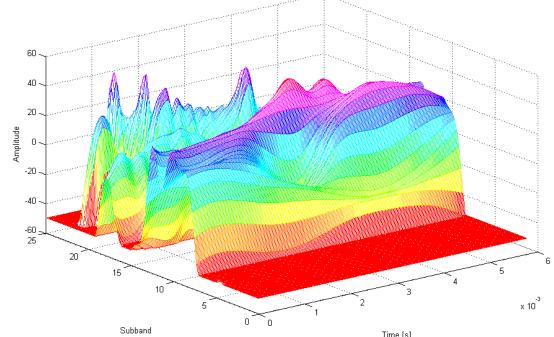
where $SMR_{l,n,k} = \frac{|X_{l,n,k}|}{\sqrt{12 \cdot T_{l,n}}}$

Tree optimization procedure

IF $WTE_{E_{i}} \leq WTE_{E_{i-1}}$ and $PE_{l,n} \geq PE_{l+1,2n} + PE_{l+1,2n+1}$, **THEN** perform decomposition of the current level l = l + 1 and corresponding nodes $(l, n) \in E_i$ and transfer to new tree structure $E_i = E_{i+1}$, and repeat optimization procedure for next new tree structure E_i .

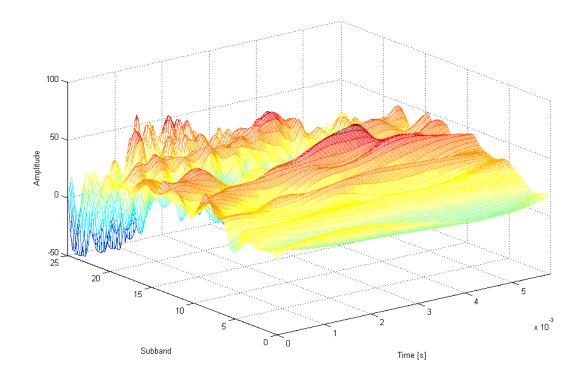

 $\frac{|X_{l,n,k}|}{\sum_{\forall (l,n) \in E} |X_{l,n,k}|}$

$MR_{l.n.k}$] + 1)


 $/K_{l.n}$

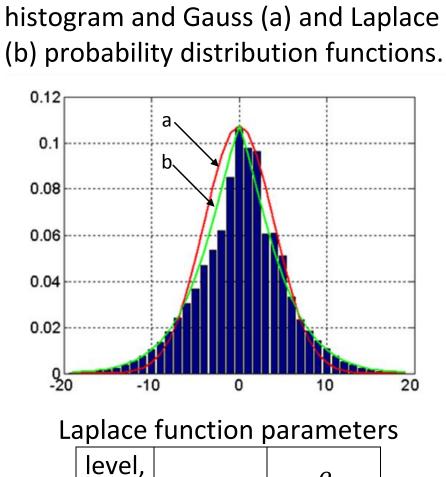
Excitation Scalogram Creation 4.

Masking thresholds² $T_{l,n}$ and temporal maskers³ $F_{l,n}$ are used for excitation scalogram estimation;



Applying spreading energy functions in two domains

Excitation scalogram associated with original signal


Excitation scalogram associated with modeled signal with 5 atoms

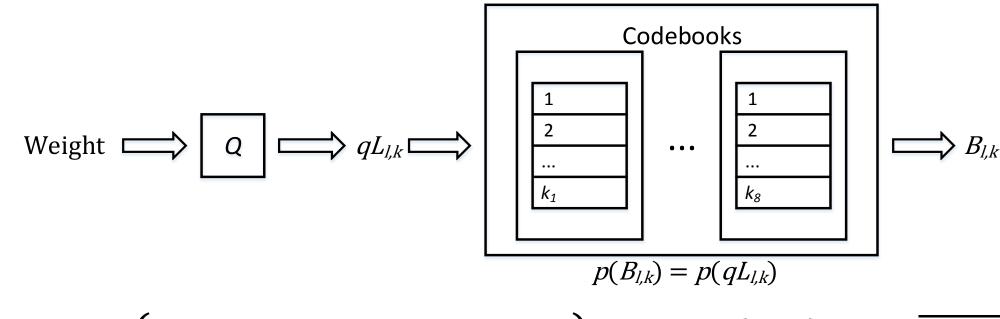
² A. Petrovsky, D. Krahe, A.A. Petrovsky, "Real-Time Wavelet Packet-based Low Bit Rate Audio Coding on a Dynamic Reconfigurable System", presented at the AES 114th Convention, Amsterdam, The Netherlands, 2003 March 22-25.

³ Al. Petrovsky, E. Azarov, A., Petrovsky, "Hybrid signal decomposition based on instantaneous harmonic parameters and perceptually motivated wavelet packets for scalable audio coding", Elsiver, Signal Processing, Special Issue "Fourier Related Transforms for Non-Stationary Signals", vol. 91, pp. 1489-1504 (2011, June).

5. **Parameters Quantization & Coding**

Example of wavelet coefficients

level,	α	β
1	0.00001	0.12
2	0.0008	0.2
3	0.15	0.36
4	0.13	0.7
5	0.27	1.25
6	0.26	1.3
7	0.35	1.8
8	0.6	1.8


Weight quantization:

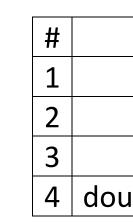
$$qL_{l,n,k} = 2 \left| nint \left(\frac{|X_{l,n,k}|}{\Delta_{l,n}} \right) \right|$$

$$\Delta_{l,n} = \sqrt{12T_{l,n}/K_{l,n}} - \text{quantiz}$$

Quantized parameters coding:

 $qL_{l,n,k}$ encoded using Huffman algorithm.

$$B_{l,k} = (b_{k,1}, b_{k,2}, b_{k,3}, \dots, b_{k,w_k}), b_{k,j}$$


+ 1

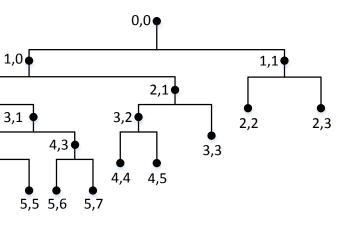
zation step

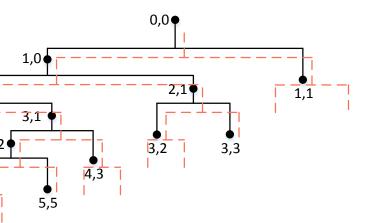
 $\in \{0,1\}, j = \overline{1, w_k}$

WP Tree Structure Coding **6**.

- •121 bits for straight *CB-WPD* tree coding too many;
- Frame dependent WP tree structure coding;
- •UP-DOWN one level WP tree structure grows.

5,4


01


Ej Example: 2,0 3,0 One level up of 4,0 5,1 5,0 terminal nodes from 6,4 6,5 6,6 6,7 6,8 6,9 7,3 7,4 7,5 7,6 7,7 $E_j - CB-WPD$, 8,1 8.2 8,3 8,4 to E_{j+1} . *E_{j+1}* 5,3 5,2 Up to 22 bits 7.3 required. 01 Code: 01 01 01 01

01

01

Action	Code
no changes	00
delete node	01
node grows	10
uble "no changes"	11

01 00 01 01

An Objective Assessment⁴ of the Audio Quality 7.

	250 atoms	450 atoms	AAC
Bitrate, kbps	45	80	100
Compression rate	15.6	8.8	7.0

 		_	•
m	р	а	Ir
	•		

Imperceptil

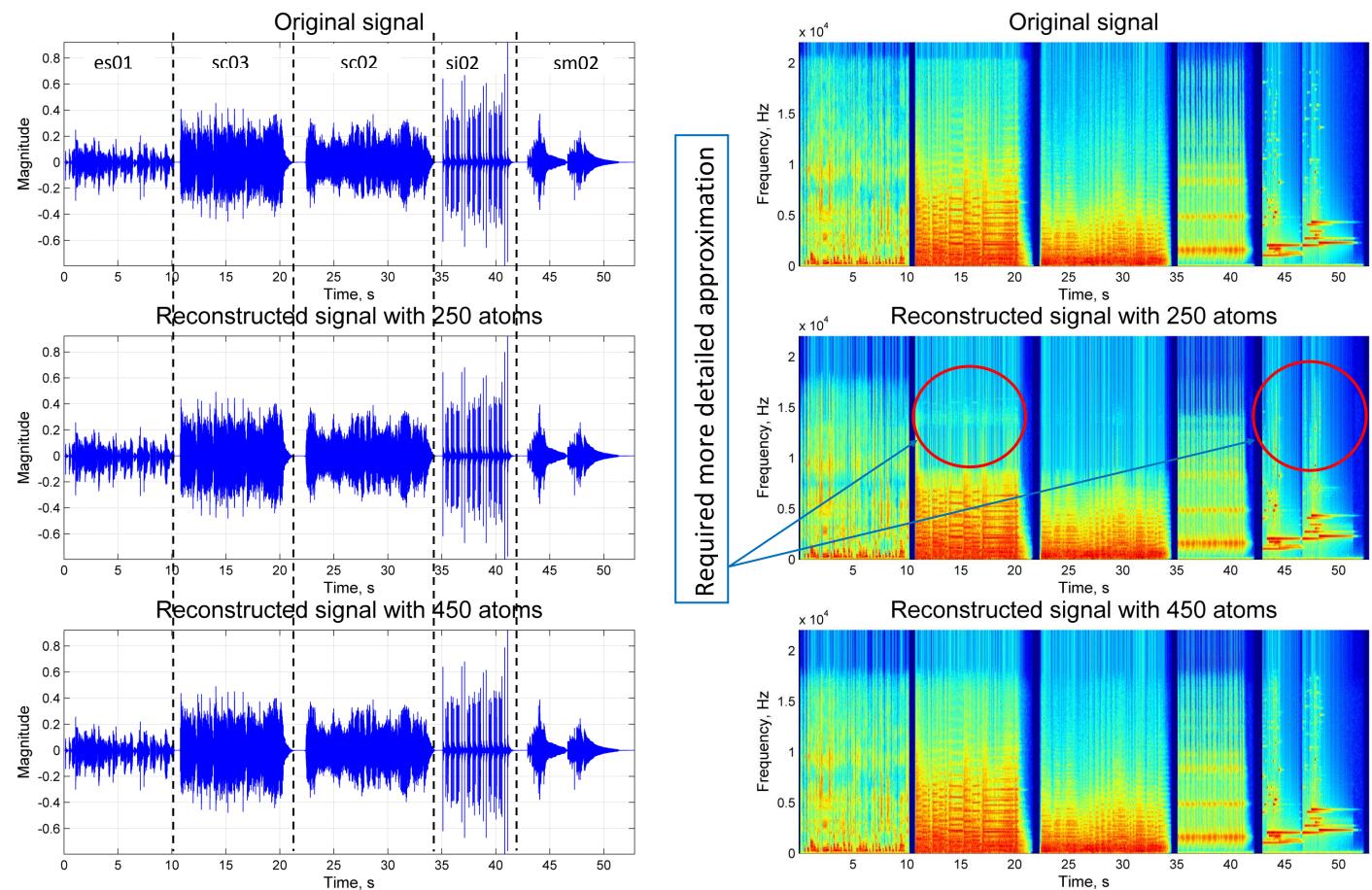
Perceptible

Slightly ann

Annoying

Very annoy

Description	Proposed coder					
(44 <i>,</i> 1 <i>kHz</i> , 16 <i>bit</i> , mono)	250 atoms	300 atoms	350 atoms	400 atoms	450 atoms	
es01 – Vocal (Suzan Vega)	-2.1254	-1.8778	-1.4908	-1.1021	-0.8544	
es02 – German speech	-0.8315	-0.6183	-0.4641	-0.4494	-0.3854	
es03 – English speech	-1.5974	-1.4694	-1.3776	-0.8741	-0.5970	
sc01 – Trumpet solo and orchestra	-0.2116	-0.1738	-0.1706	-0.1656	-0.1624	
sc02 – Orchestra piece	-0.8659	-0.7642	-0.3608	-0.2509	-0.2165	
sc03 – Contemporary pop music	-2.5894	-1.6039	-0.8315	-0.3985	-0.3001	
si01 – Harpsichord	-2.4671	-1.8598	-1.0398	-1.0578	-0.9873	
si02 – Castanets	-3.0789	-2.7877	-1.7663	-1.4170	-1.0545	
si03 – Pitch pipe	-1.0545	-0.9036	-0.7675	-0.6380	-0.6380	
sm01 – Bagpipes	-3.3451	-2.6495	-1.1496	-0.7118	-0.6265	
sm02 – Glockenspiel	-3.2723	-2.7661	-2.3840	-2.1697	-2.1484	
sm03 – Plucked strings	-1.4563	-0.8216	-0.4543	-0.2952	-0.2099	


Additional 50 atoms add 8.6 *kbps* for the bitrate.

ment description	ODG
ole	0.0
, but not annoying	-1.0
oying	-2.0
	-3.0
ing	-4.0

AAC
-0.218
-0.100
-0.132
-0.085
-0.154
-0.236
-0.483
-0.918
-0.542
-0.485
-0.269
-0.151

⁴ R. Huber, B. Kollmeier, "PEMO-Q – A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception", IEEE Transactions on audio, speech, and language processing, vol. 14, pp. 1902-1911 (2006 November).

Encoded Audio Samples Example Results 8.

Conclusions & Future Research 9.

Conclusion:

- Perceptually optimized WP dictionary approach allows to adapt psychoacoustically WP tree structure to each signal frame and provides WP dictionary with less number of functions;
- The nonlinear nature of the algorithm leads to compact signal representation;
- Proposed scalable parametric audio encoder using sparse approximation as a core provides:
 - more than twice increase compression ratio (for some sequences 250 atoms variant provides comparable results with AAC).
 - decreasing bitrate depending on signal type.
 - (For example, sc01 250 atoms, sc02 300 atoms (~53 kbps, CR ~13), si01 350 atoms (~62 kbps, CR ~11) and so on.

Future Research:

- Further parameters selection optimization and quantization algorithm improvement to increase quality of reconstructed audio signal;
- Hardware implementation of scalable parametric audio coder using sparse approximation with frame-to frame perceptually optimized wavelet packet based dictionary as a field programmable system-on-chip (FPSoC).