
Design and implementation of reversible integer quaternionic
paraunitary filter banks on adder-based distributed arithmetic

Nick A. Petrovsky Eugene V. Rybenkov Alexander A. Petrovsky
nick.petrovsky@bsuir.by
September 20, 2017

Belarusian State University of Informatics and Radioelectronics,
Department of Computer Engineering
Minsk, Belarus

21st Conference SPA 2017
Signal Processing: Algorithms, Architectures, Arrangements, and Applications

Introduction

Motivation
Recently, there has been increasing interest in designing filter banks with low
implementation complexity. Approaches based on the sum-of-power-of-two (SOPOT)
coefficients are particularly attractive because coefficients multiplications can be
implemented with simple shifts and additions only which makes it possible to use the
adder-based distributed arithmetic (DA) 1.

Idea
The adder-based DA (DA∑), in contrast to conventional DA (ROM-based DA),
decomposes the fixed coefficients of the inner product into bit level, distributes the
multiplication operation, and shares the common summation terms.

1T.-S Chang, C. Chen, C.-W. Jen, “New distributed arithmetic algorithm and its application to IDCT”, IEE Proc.
Circuits Devices and Systems, vol.146.no.4, 1999, pp.159-163.

1

The aim of paper

The purpose of the given paper develops a new family of the
integer-to-integer invertible quaternionic Q-PUFB (Int-Q-PUFB) using
multipliers based on the block-lifting structure with sum
of-powers-of-two (SOPOT) coefficients.

Design examples show that SOPOT Int-Q-PUFB with a good frequency
characteristic can be designed with low implementation complexity.

2

Quaternion algebra and orthogonal matrices

The quaternion algebra H is an associative non-commutative four-dimensional algebra

H = {q = q1 + q2i + q3j + q4k|q1, q2, q3, q4 ∈ R},

where the orthogonal imaginary numbers obey the following multiplicative rules:

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

There are two different multiplication matrices M+ (q) and M− (q):

qx ⇔ M+ (q)x, xq ⇔ M− (q)x

which are related in the following way:

M∓ (q) = DCM± (q)T DC,

where DC = diag (1,−I3) denotes the conjugate quaternion q = q1 − q2i − q3j − q4k in
the matrix representation, i.e. q = DCq.

Thus M± (q) = M± (q)T is equal to M∓ (q) = DCM± (q)DC.

Every matrix belonging to SO(4), can be represented as a product of left and right unit
quaternions P and Q (|P| = 1 and |Q| = 1)

∀
R∈SO(4)

∃
P,Q∈unit quat.

R = M+ (P) · M− (Q) = M− (Q) · M+ (P)
3

Implementing Q-PUFB using quaternion multiplication

Structurally lossless lattice for Q-PUFB 23

E(z) = GN−1GN−2 . . .G1E0;

E0 =
1√
2
Φ0Wdiag (I4,J4) , Gi =

1
2ΦiW�(z)W, i = 1,N − 1,

W =

[
I2 I2

I2 −I2

]
; Λ(z) = diag

(
I4, z−1I4

)
,

Φi = diag (Γ, I4) diag
(
M− (Qi) ,M− (Qi)

)
diag

(
M+ (Pi) ,M+ (Pi)

)
diag (Γ, I4)

ΦN−1 = diag (J4, I4) diag
(
M− (Qi) ,M− (Qi)

)
diag

(
M+ (Pi) ,M+ (Pi)

)
diag (Γ, I4) ,

8-channel PMI LP Q-PUFB realized according to is one-regular if and only if:

QN−1 = ±1
2QN−2 · . . . · Q0 · c1 · P0 · . . . · PN−1 · c2,

where c1 and c2 are the quaternions: c1 = 1 + i + j + k; c2 = k; N is order of the
factorization
2M. Parfieniuk and A. Petrovsky, “Quaternionic lattice structures for four-channel paraunitary filter banks,”
EURASIP J. Adv. Signal Process., Special Issue on Multirate Systems and Applications., vol. 2007, Article ID 37481.
3M. Parfieniuk and A. Petrovsky, “Inherently lossless structures for eight and six-channel linear-phase paraunitary
filter banks based on quaternion multipliers,” Signal Process., vol. 90, pp. 1755–1767, 2010.

4

Implementing Q-PUFB using quaternion multiplication

The quaternion multiplication as integer-to-integer operator

M+ (Q) =

[
C(Q) −S(Q)

S(Q) C(Q)

]
=

[
I2 F(Q)

0 I2

]
︸ ︷︷ ︸

U(Q)

[
I2 0

G(Q) I2

]
︸ ︷︷ ︸

L(Q)

[
I2 H(Q)

0 I2

]
︸ ︷︷ ︸

V(Q)

.

The block-lifting scheme for Q-MUL as integer-to-integer operator

xj

H

x1
x2

x3
x4

y1
y2

y3
y4

yi

yj

x1i x2i

x1j x2j

x1
x2

x3
x4

xi

xj

x2i x1i

x2j x1j

1
2

3

G F -F -G -H

xi

F(Q) = (C(Q)− I2)S(Q)−1,

G(Q) = S(Q),

H(Q) = S(Q)−1(C(Q)− I2).

M+ (Q) = [I2 −H(Q)

0 I2

]
︸ ︷︷ ︸

V(Q)

[
I2 0

−G(Q) I2

]
︸ ︷︷ ︸

L(Q)

[
I2 −F(Q)

0 I2

]
︸ ︷︷ ︸

U(Q)

.

5

Implementing Q-PUFB using quaternion multiplication

Controlling the dynamic range of lifting coefficients
The use of the ladder circuit parameterization increases the dynamic range of the
matrix coefficients, and that is unacceptable for fixed-point arithmetic. Bringing the
parameters of the multiplier to the required dynamic range can be achieved if the
quaternion multiplication operator selected according to the following equation 4:

M+ (Q) =

Ppost · M+
(

Q̃
)
· Ppre, if det (P) = 1,

Ppost · M−
(

Q̃
)
· Ppre, if det (P) = −1,

Qx = M+ (Q)x = PpostM±
(

Q̃
)

Pprex =

= Ppost

[
I2 F(Q̃)

0 I2

]
︸ ︷︷ ︸

U(Q̃)

[
I2 0

G(Q̃) I2

]
︸ ︷︷ ︸

L(Q̃)

[
I2 H(Q̃)

0 I2

]
︸ ︷︷ ︸

V(Q̃)

Pprex.

4M. Parfieniuk and A. Petrovsky, “Quaternion multiplier inspired by the lifting implementation of plane rotations,”
IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 57, no. 10, pp. 2708–2717, Oct. 2010.

6

Adder-based distributed arithmetics (DA∑)
An inner product of length L is y = A · X. Adder-based DA decomposes (by T. S. Chang
et. al.) the fixed coefficients Ai into bit level (B is word length of vector A components):

y =
L∑

i=1
AiXi =

L∑
i=1

(B∑
j=1

Aij2−j

)
Xi =

B∑
j=1

(L∑
i=1

AijXi

)
2−j — bit-parallel.

The term
∑L

i=1 AijXi = Fj is a combination of Xi since Aij is only 0 or 1. If Xi is a
serially input one can obtain Fj bit by bit via serial adders, that is

Fj =

M∑
m=1

Fj,m2−m.

And equation can be rewritten:

y =
B∑

j=1
Fj2−j =

B∑
j=1

(M∑
m=1

Fj,m2−m

)
2−j =

M∑
m=1

(B∑
j=1

Fj,m2−j

)
2−m — bit-serial.

One can shift and then accumulate the term
∑B

j=1 Fj,m2−j at each cycle m to obtain the
inner product. Since Fj is computed using adders the proposed DA algorithm is called
adder-based DA (DA∑)adder-based DA (DA∑)adder-based DA (DA∑).

7

Problem statement of the designing Int-Q-PUFB

Design problem of a Int-Q-PUFB can be defined as: find a set of quaternions Pi and Qi

for a Q-PUFB and word length B of block-lifting coefficients F(q), G(q), and H(q), which
provide high value of the coding gain (CG)

CG = 10 log10

 1
M
∑M−1

k=0 σ2
xk(∏M−1

k=0 σ2
xk

) 1
M

 ,

σ2
xk are the subband variances,

with the following constraints:

1. the maximum stopband attenuation (εSBE) measured on terms of energy;
2. the minimum reconstruction error εq, as a result of quantization of block-lifting
coefficients: εq = max (|y(n)− x(n)|), where y(n) is the output data of the synthesis
filter bank; x(n) is the input data of the analysis filter bank;

3. the maximum number of ONE bits K in binary code to represent the block-lifting
coefficients of Int-Q-PUFB: filter coefficients are sum-of-power-of-two.

8

Obtains the SOPOT Int-Q-PUFB coefficients (bit-parallel DA∑)
Polar form of quaternion:Q = |Q| · eiϕejψekχ

Target function
f (x) = −CG (x)

Constraints

g1 = εSBE (x)− εminSBE ≤ 0; g2 = εq (x)− εmaxq ≤ 0; g3 = K (x)− Kmax;

ϕ ∈ [−π, π] ; ψ ∈
[
−π2 ,

π

2

]
χ ∈

[
−π2 ,

π

2

]
Modified Lagrange function

P
(

x, µk, rk
)
=

1
2rk

ρ∑
j=1

{[
max

(
0, µk

j + rkgj (x)
)]2

−
(
µk

j

)2
}
,

where

P
(
x, µk, rk) — penalty function,

µk =
(
µk

1, . . . , µ
k
ρ

)
—vector of Lagrange multipliers

rk — penalty coefficients, k — iteration number
9

Obtains the SOPOT Int-Q-PUFB coefficients (bit-parallel DA∑)
Finding the SOPOT coefficients. Algorithm steps

1. set the initial values (initial point, penalty coefficients increment, B, K, order of
factorization N)

2. construct modified Lagrange function L
(
x, µk, rk)

3. find point x∗
(
µk, rk) of unconstrained minimum of function L

(
x, µk, rk), in the

same time determine parameters :
3.1 transform vector x to the quaternions Pi , Qi
3.2 compute the coefficients of block-lifting structure: F(Q̃), G(Q̃), H(Q̃) and permutation

matrix Ppre , Ppost .
3.3 compute the output y(n) of analysis-synthesis system
3.4 determine CG(x); εSBE(x), εq(x), K(x)

4. if |P
(
x∗(µk, rk), µk, rk)| ≤ ε then return the minimum of a Lagrange function

x∗
(
µk, rk) and goto step 6 else update penalty coefficients rk+1 and Lagrange

multipliers µk+1
j

5. set xk+1 = x∗
(
µk, rk); k = k + 1 and goto step 2

6. end

10

Design example: block-lifting coefficients of
LP PMI 8 × 24 Int-Q-PUFB for N = 3, B = 12, K = 3 (bit-parallel DA∑)

Analysis part

M± () f11 , f12 SF1,2 g11 , g12 SG1,2 h11 , h12 SH1,2 Ppre Ppost

+(2−5 + 2−4 + 2−3) +(2−10 + 2−9 + 2−2) −(2−4 + 2−3 + 2−1)
M− (P1) −(2−3 + 2−2 + 2−1)

+,−
+(2−8 + 2−5 + 2−3)

+,−
−(2−6 + 2−4 + 2−1)

−,− [1 3 2 4] [3 1 4 2]

M+ (P2)
−(2−8 + 2−6) −,+

+(2−5 + 2−4 + 2−3)
+,− −(2−8 + 2−5 + 2−2) −,− [1 3 4 2] [4 1 3 2]

−(2−7 + 2−5 + 2−2) +(2−5 + 2−4 + 2−3) +(2−8 + 2−6 + 2−5)

M+ (P3)
+(2−4 + 2−3 + 2−2) −,− −(2−7 + 2−4 + 2−3) −,− −(2−5 + 2−2 + 2−1)

+,+ [1 2 3 4] [1 2 3 4]
+(2−6 + 2−3 + 2−1) +(2−6 + 2−3 + 2−2) −(2−12 + 2−10)

M− (Q1)
+(2−6 + 2−4 + 2−2) −,− −(2−8 + 2−6 + 2−5)

+,− +(2−5 + 2−3 + 2−2) −,+ [1 4 2 3] [2 4 3 1]
−(2−6 + 2−5 + 2−2) +(2−8 + 2−6 + 2−4) +(2−7 + 2−4 + 2−3)

M+ (Q2)
−(2−6 + 2−5 + 2−1)

+,+
−(2−7 + 2−6 + 2−5)

+,+
+(2−7 + 2−3 + 2−1)

+,+ [1 4 3 2] [1 4 3 2]
+(2−5 + 2−3 + 2−2) −(2−8 + 2−5 + 2−4) −(2−8 + 2−7 + 2−2)

M− (Q3)
+(2−4 + 2−2 + 2−1) −,+

+(2−5 + 2−4 + 2−1) −,− +(2−7 + 2−4 + 2−3) −,+ [1 3 4 2] [2 3 1 4]
−(2−7 + 2−6 + 2−3) −(2−8 + 2−4 + 2−1) −(2−4 + 2−2 + 2−1)

Synthesis part

M± () h11 , h12 SH1,2 g11 , g12 SG1,2 f11 , f12 SF1,2 Ppre Ppost

M− (
P1

) −(2−5 + 2−4 + 2−3)
+,− −(2−10 + 2−9 + 2−2)

+,− −(2−4 + 2−3 + 2−1) −,− [2 4 1 3] [1 3 2 4]
+(2−3 + 2−2 + 2−1) −(2−8 + 2−5 + 2−3) −(2−6 + 2−4 + 2−1)

M+
(
P2

) +(2−8 + 2−6)
+,− +(2−5 + 2−4 + 2−3)

+,− −(2−8 + 2−5 + 2−2)
+,+ [2 4 3 1] [1 4 2 3]

+(2−7 + 2−5 + 2−2) +(2−5 + 2−4 + 2−3) +(2−8 + 2−6 + 2−5)

M+
(
P3

) −(2−4 + 2−3 + 2−2)
+,+

+(2−7 + 2−4 + 2−3) −,− +(2−5 + 2−2 + 2−1) −,− [1 2 3 4] [1 2 3 4]
−(2−6 + 2−3 + 2−1) −(2−6 + 2−3 + 2−2) +(2−12 + 2−10)

M− (
Q1

) −(2−6 + 2−4 + 2−2)
+,+

−(2−8 + 2−6 + 2−5)
+,− +(2−5 + 2−3 + 2−2)

+,− [4 1 3 2] [1 3 4 2]
+(2−6 + 2−5 + 2−2) +(2−8 + 2−6 + 2−4) +(2−7 + 2−4 + 2−3)

M+
(
Q2

) +(2−6 + 2−5 + 2−1)
+,+

+(2−7 + 2−6 + 2−5)
+,+

−(2−7 + 2−3 + 2−1)
+,+ [1 4 3 2] [1 4 3 2]

−(2−5 + 2−3 + 2−2) +(2−8 + 2−5 + 2−4) +(2−8 + 2−7 + 2−2)

M− (
Q3

) −(2−4 + 2−2 + 2−1)
+,− −(2−5 + 2−4 + 2−1) −,− +(2−7 + 2−4 + 2−3)

+,− [3 1 2 4] [1 4 2 3]
+(2−7 + 2−6 + 2−3) +(2−8 + 2−4 + 2−1) −(2−4 + 2−2 + 2−1)

11

FPGA implementation of LP PMI Int-Q-PUFB for N = 3 (bit-parallel DA∑)
FPGA architecture of given block-lifting based Q-MUL (Quaternion P1)

Ppre

1

2

1
2

3
4

3

4

±
+

±
+

4
3

2
1

x qx

1
2

3
4

±
+

±
+

4
3

2
1

±
+

±
+

H

PpostSH1

SH2

SG1

SG2

SF1

SF2

 QV QL QU

DA

DA

G

DA

DA

F

DA

DA

1

2

3

4

>>4>>3>>1>>6>>4>>1

-

-

-

-

x2x4

r2

H

>>6>>4>>1>>4>>3>>1

-

-

-

-

x2x4

r1

DA
DA

Filter bank structure
FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

2

1

3

4

5

6

7

8

W

2+6

1+5

3+7

4+8

1−5

2−6

3−7

4−8

M
+
(P

0)
·Γ

M
+
(P

0)

Γ
·M

−
(Q

0)
M

−
(Q

0)

W

R
eg

is
te

r

W

M
+
(P

1)
·Γ

M
+
(P

1)

Γ
·M

−
(Q

1)
M

−
(Q

1)

1>>

1>>

1>>

1>>

Input

1 4 7 8 9 10 13 16Clock-period

Factorization stages ·E0 G1

J4
1>>

1>>

1>>

1>>

2

W

R
eg

is
te

r

W

M
+
(P

2)
·Γ

M
+
(P

2)

Γ
·M

−
(Q

2)
M

−
(Q

2)

1>>

1>>

1>>

1>>

18 19 22 25

G2

1>>

1>>

1>>

1>>

J4

17

12

Design example: LP PMI Int-Q-PUFB for B = 12, K = 3

8-channel LP PMI 8 × 24 Int-Q-PUFB

h
5
(t)

h
1
(t)

h
2
(t)

h
3
(t)

h
4
(t)

h6(t)

h
7
(t)

h
0
(t)

0 0.1 0.2 0.3 0.4 0.5
ω/2π

ar
g(
H
k(
ej
ω
))

|H
k(
ej
ω
)|[
dB
]

π

0

-π

-40

-30
-20

-10

0

|T
(e
jω
)|[
dB
]

-0.1

0

0.1

ψ
5
(t)

ψ
1
(t) ψ

2
(t) ψ

3
(t)

ψ
4
(t) ψ

6
(t) ψ7(t)

φ(t)

• CG = 9.49 dB, εSBE = −21.45 dB
• DC att. = −49.21 dB, B = 16, K = 3

Floating point precision Q-PUFB:
εSBE = −20.56 dB, CG = 9.36 dB,

DC Att. = −313.0712 dB

0 0.1 0.2 0.3 0.4 0.5ω/2π

|H
k(
ej
ω
)|[
dB
]

-40

-30

-20

-10

0

FPGA resource utilization:

Scheme
Occupied
Slices

Slice
Regis-
ters

Slice
LUTs

LUT-
FF
pairs

Proposed Q-MUL 159 217 431 469
Int-Q-PUFB Analysis 1733 3562 5607 5977
Int-Q-PUFB Synthesis 1596 3623 5615 5977

13

Comparison of published LP PUFBs with Int-Q-PUFB

Transform format M × L
M L Transform CG εSBE DC Att. precision

8 16

Tran et al. 9.22 –19.4 <–300 Floating p.
Tran et al. * 9.26 –17.7 <–300 Floating p.
DCT-2 * 9.27 –18.0 <–300 Floating p.
WHT-2 * 9.27 –18.0 <–300 Floating p.

Int-Q-PUFBInt-Q-PUFBInt-Q-PUFB 9.449.449.44 –18.4–18.4–18.4 –40–40–40 B = 16, K = 3B = 16, K = 3B = 16, K = 3

8 24

Oraintara et al. * 9.36 –19.5 <–300 Floating p.
DCT-3 * 9.38 –19.3 <–300 Floating p.
WHT-2-3 * 9.38 –19.3 <–300 Floating p.
Q-PUFBQ-PUFBQ-PUFB 9.379.379.37 –21.1–21.1–21.1 <–316<–316<–316 Floating p.Floating p.Floating p.

Int-Q-PUFBInt-Q-PUFBInt-Q-PUFB 9.499.499.49 –21.3–21.3–21.3 –49–49–49 B = 12, K = 3B = 12, K = 3B = 12, K = 3

8 32
DCT-2-4 9.41 –23.8 <–300 Floating p.
WHT-4 * 9.46 –18.9 <–300 Floating p.

Int-Q-PUFBInt-Q-PUFBInt-Q-PUFB 9.489.489.48 –24.8–24.8–24.8 –38–38–38 B = 12, K = 3B = 12, K = 3B = 12, K = 3
(*) Bodong Li; Xieping Gao, A method for initializing free parameters in lattice structure
of linear phase perfect reconstruction filter bank, Signal Processing, Vol 98, pp 243-251,
2014/5/1.

14

Image coding results for LP PMI 8 × 24 Int-Q-PUFB for N = 3, B = 16, K = 3

Wavelet coefficients for ”Lena” test image

15

Image coding results for LP PMI 8 × 24 Int-Q-PUFB for N = 3, B = 16, K = 3

The Table shows the comparisons of PSNRs at various bitrates for two 512 × 512 8-bit
test images, Lena and Barbara, between the given 8 × 24 Int-Q-PUFB (CG = 9.61 dB)
and published LP PUFBs 5: 8 × 16 PUFB (CG = 9.35 dB) and 8 × 16 BOFB (CG = 9.62 dB)
and 8 × 24 BOFB (CG = 9.68 dB), and also 8-channel 16-tap PUFB based on lapped
orthogonal transform (LOT).

Filter bank “Lena” [bpp] “Barbara” [bpp]
0.25 0.5 1.0 0.25 0.5 1.0

8 × 16 PUFB 33.17 36.57 39.73 29.20 33.31 38, 30
8 × 16 LOT 32.91 36.13 39.28 29.05 33.04 37, 84
8 × 24 PUFB 33.36 36.64 39.94 29.43 33.53 38, 34
8 × 24 GenLOT 33.25 36.54 39.82 29.31 33.55 38, 31
8 × 16 BOFB 33.43 36.67 39.73 29.31 33.33 38, 26
8 × 16 GLBT 33.35 36.62 39.70 29.23 33.28 38, 19
8 × 24 BOFB 33.53 36.82 39.84 29.66 33.63 38, 38
8 × 24 GLBT 33.32 36.61 39.68 29.29 33.29 38, 18
8 × 24 Q-PUFB8 × 24 Q-PUFB8 × 24 Q-PUFB 34.6534.6534.65 37.1537.1537.15 39.4139.4139.41 30.5830.5830.58 34.5134.5134.51 38, 1938, 1938, 19
JPEG2000 (9/7) 33.25 36.29 39.25 27.73 31.41 36, 56

Our designed 8 × 24 Int-Q-PUFB has a better PSNR performance than the corresponding
filter banks, especially for image with relatively strong highpass components.
5T. Uto, T. Oka, and M. Ikehara, “M-channel nonlinear phase filter banks in image compression: Structure, design,
and signal extension,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1339–1351, April 2007. 16

Conclusions and future work

Conclusions

• in this paper we introduced a generalized block-lifting structure using adder-based
DA∑ as a block of quaternion multiplier in the Q-PUFB lattice structure

• possible to implement integer-to-integer transform in fixed point arithmetic with
very short critical-path (in case K = 3 amounts to only three addition/subtraction
operations)

• hardware constrained SOPOT coefficient optimization allows to reduce distortions
in compare with direct quantization

• shown approach can be applied for the lossy-to-lossless (L2L) image coding

Future work

• Develop non-separable Q-PUFB transform to reduce image processing latency
• Generalize synthesis process for M-channel Int-Q-PUFB, where M > 8

17

Thank you for attention
Questions?

17

