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Introduction

Students of BSUIR study the whole range of issues related to handling, 
storage, transfer and protection information against interference and unauthorized 
access. Relevant lecture courses are relatively new, many of them are in the dynamics 
of formation or development in accordance with the technological revolution and 
needs of time, and require to explore new areas of mathematics which are not 
included in the classical course "Higher Mathematics" -  appropriate facilities of 
higher technical education. Such courses as "Digital Signal Processing", "Applied 
Coding Theory", "Cryptographic methods of information protection”, and a number 
of others require a thorough knowledge of modern algebra.

Therefore Department of Higher Mathematics develops the course "Applied 
Mathematics", which lays a foundation of modern applied algebra and creates a 
mathematical foundation for information protection against interference and 
unauthorized access. Over the years, this course is successfully read to BSUIR 
students of specialities "Information", "Telecommunication Networks", "Multimedia 
Information Distribution Systems", "Information Security in Telecommunications".

Experience shows that deep and reliable acquisition of new material is not 
possible without its thorough elaboration during practical and laboratory classes. This 
publication is a study guide to carry out practical and laboratory classes on the course 
named above. A working model for eight practical and laboratory studies on the 
main themes of the course is proposed. Depending on tradition, lab assignments can 
be considered as hometasks for self-study and personal development.



Laboratory Study № 1 «Number Theory»

Necessary Theoretical Data

Below we consider: the set of natural numbers, denoted by N; the set of 
integers, denoted by Z.

The set of integers Z is countable, consists of elements 0; ±1; ±2;...; ± n;... . 
Two algebraic operations are defined on it -  addition and multiplication. These 
operations have the following properties (for any a,b ,c  e  Z):

1. associativity: a + (b + c) = {a + b) + с ; a • (b • c) = a ■ (b • c ) ; 
commutativity: b + a = a + b; a-b = b -a ;

2. there exist the identity elements 0 and 1:
a + 0 ~ 0  + a — a; a -1 = 1- a = a;.

3. (a + b)-c = a -c  + b -c  -  distributive law;
4. for every integer a e Z  there exists a unique additive inverse, i.e., there exists 

a unique integer b such that a + b = b + a = 0. The additive inverse of a number 
a e Z  is also called the opposite number of a.

Theorem 1.1 (the division algorithm). For any integers a and b, b ^  0, there 
exist unique integers q and r , 0 < r < |Z>|, such that a = b ■ q + r .

In this equality r is called the remainder and q is called the quotient (the 
incomplete quotient if r ^  0) resulting from division of a by b . If r = 0 then b and 
q are called divisors or factors of a . Everyone has been able to find the quotient 
and remainder by long division method since one’s school-days.

Corollary. Let b be a natural number, b>  1. For any integer a and the
maximal integer m >  0 that satisfies the condition a > b m there exist unique integers 
cif, 0 < a i <b, 0 < i <m, such that

о — ±{amb m + am_xb m ' + ...+  ciq).
This equality is written shortly as a = ±(amam_l ...a0)b or a = ±amam_l . .n 0 

(if b is known from context) and is called the notation of a in positional base b 
numeral system or in numeral system of base b. The usual positional base 10 numeral 
system (it is also called the decimal system) seems to be normal and natural. But in 
different situations other bases are more convenient. For instance, on a computer’s 
micro level all calculations are carried out in the binary (base 2) numeral system. The 
hexadecimal (base 16) positional numeral system is used for conversion from the 
decimal to the binary numeral system.

Lemma 1.1. I f  in the equality ax + a2 + ■.. + an = + b2 + ... + bm all items are
integers and all except maybe one are divided by an integer d, then this excluded 
item is also divided by d.

Definition 1.1. If integers ax,a 2, . . . ,a n are divided by an integer d  then d  is 
called their common divisor.

Subsequent discussion deals only with positive integer divisors.
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Definition 1.2. The largest positive integer among all common divisors of 
integers a{,a 2, . . . ,a n is called their greatest common divisor and is written as 
GCD(au a2, . . . ,a n).

Theorem 1.2. I f  a = b-q  + c then GCD(a,b)=GCD(b,c).
Theorem 1.2 allowed Euclid (approximately 2300 years ago) to base the 

following fact.
Theorem 1.3. The greatest common divisor o f integers a and b (a>b) is equal 

to the last different from zero remainder in the chain o f equalities:
a = b -q x +r{; 
b = r[ -q2 +r2;

rn _ 2 =rn_i •qn +rn ; i.e., rn =GCD(a,b).
r n —1 ~  r n  ' 4  n + 1 •

Theorem 1.3 formulates the Euclidean algorithm (also called Euclid’s 
algorithm) for computing the greatest common divisor of two integers. The Euclidean 
algorithm can also be formulated in another way that gives us the second method to 
find the greatest common divisor. Namely, we compute the differences 
a - b  = c; b — с = d ; ... until we get the last non-zero difference which coincides 
with GCD(a, b).

Example 1.1. Using the Euclidean algorithm find GCD(72, 26).
Solution. In accordance with Theorem 2.2 we have 72 = 26-2 + 20;

26 = 20-1 + 6 ; 20 = 6-3 + 2; 6 = 2• 3. Hence, GCD(72, 26) = 2 .
Theorem 1.4. I f  d  = GCD(a,b) then there exist two integers и and v such that 

the following identity (Bezout’s identity) takes place: d  — au + bv.
Example 1.2. It follows from example 1.1 that

2 = 20 + 6 ■ (-3) = 20 + (26 + 20 • (-1)) • (-3 ) = 20 • 4 + 26 • (-3) =

= (72 + 2 6 -(-2 ))-(4  + 2 6 -(-3 ))  = 72-4 + 2 6-(-11 ).
Such a way of computing the integers и and v for Bezout’s identity is called the 

extended Euclidean algorithm. It consists of two steps. The first one (up-sweep step) 
is actually the Euclidean algorithm. On the second step (it is called down-sweep step) 
we sequentially express remainders for every stage of the previous step and combine 
like terms.

Definition 1.3. A natural number p  >1 is called a prime number if it has no 
positive integer divisors other than 1 and p  itself.

Theorem 1.5. Every natural number n>  1 is either prime or has a prime 
divisor.

Suppose that p  and q are natural numbers greater than 1; then from the formula 
n = p -q  it follows that either p  or q lies in the interval [2;Vw]. We obviously 
have that the least natural divisor p  > 1 of a natural number n > 1 is a prime number. 
Historically the first method of verifying whether a natural number n > 1 is prime or 
not was a method called “the sieve of Eratosthenes”. It works as follows: one divides
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a given natural number n > 1 by all prime numbers less than or equal to J n .  If any 
of the divisions come out as an integer then the original number is not a prime. 
Otherwise it is a prime. The sieve of Eratosthenes was created by Eratosthenes, an 
ancient Greek mathematician. Nowadays there are fairly large number of primality 
tests.

Theorem 1.6 (Euclid’s theorem). The number o f primes is infinite. .
Theorem 1.5 establishes importance of prime numbers: every nonzero natural 

number can be factored into primes. Therefore primes are building blocks of all 
natural numbers.

Definition 1.4. Two integers a and b are said to be coprime or relatively prime 
if GCD (a, b) = l.

Theorem 1.7 (coprimeness criterion). Two integers a and b are relatively 
prime iff there exist integers и and v such that a -u  + b-v = 1.

Corollary. GCD(ac, b) = 1 if and only if GCD(a, b) - 1, GCDic, b) = 1.
The following property of primes is very important in number theory and its 

applications.
Lemma 1.2. Let the product ab of integers a and b is divided by an integer с 

and GCDia, c) = 1. Then b is divided by с .
Theorem 1.8 (the fundamental theorem of arithmetic). Every integer n>  1 

can be written as a unique product (up to the order o f the factors) ofprime numbers
n = ± p x • p 2 •... • p s .

If we collect the same factors in this equality we obtain the canonical 
decomposition of n: n — p xn ■ p 2n  • . . .p ?  .

Example 1.3. Let consider examples of the canonical decomposition of integers:
a) 196 = 2-98 = 2-2-49 = 22-72; b) 212 -1  = 4095 = 3 2 -5-7-13.
Theorem 1.9. Let m be a natural number, m> 1; then for any integers a and 

b the following conditions are equivalent:
1) a and b leave the same remainder upon division by m\
2) a -  b is divided by m, i.e., a — b = mq for a suitable integer q\
3) a = b + mq for some integer q.
Definition 1.5. Two integers a and b are said to be congruent modulo m if they 

satisfy one of the conditions of Theorem 1.9. It is denoted by the symbol 
a  = Z)(mod m) or a = b(m) which is read “a is congruent to b modulo m”. m is 
called the modulus of the congruence.

Example 1.4. -5 = 7(mod 4) = 1 l(mod 4) s  23(mod 4) =; 3(mod 4).
Example 1.5. Suppose a = mq + r; then a = r(modm) , i.e., every integer is 

congruent modulo m to its remainder upon division by m. It follows from definition 
1.5 and the second condition of theorem 1.9 (because a — r is divided by m) .

Basic properties of congruences
1. Let be a = Z>(mod m). Then (a ± c) = {b ±  c)(mod m) for any integer c. It 

means that we can add (subtract) the same integer on both sides of a congruence.
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2. We can add and subtract congruences term by term: if a = 6(mod m ), 
с = d(mo&m) then (a  + c) = (b + c/)(mod m)\ (a —c) = (b — t/)(mod m).

3. We can also multiply congruences term by term: if a  = &(mod m ), 
с = d{modm) then ac = 6<i(mod m).

4. We can raise both sides of a congruence to the same natural power: if 
a = b(modm) then a n = &w(mod m).

5. If in the congruence a = 6(mod m) integers a, b, m have a common factor d

6. A  congruence can be reduced by a common multiple coprime to modulus: if 
a — dax, b = d t \ , GCD (d, m) = 1 then from the congruence dax = dt\ (mod m) we 
obtain: ax = bx (modm).

7. We can multiply both sides of a congruence on an arbitrary integer factor: if 
a = &(mod m) then at = Z? (̂mod m) for an arbitrary integer t.

8. Reflexivity: a = a (mod m) for an arbitrary integer a and any natural 
number m > 1.

9. Symmetry: if a = b (mod m) then b = a (mod rn).
10. Transitivity: if a = b (mod m) and b = c (modm) then a = c (mod m). 
Theorem 1.10 (Fermat’s Little Theorem). Let p  be a prime number which

does not divide an integer a . Then a p~l =1 (mod p ) .
Congruence theory and little Fermat’s theorem allow us to find the remainder in 

division of a large natural number by a prime number.
Example 1.6. Find the remainder in division of 39149 by 31.
Solution. 31 is a prime. 39 is not divided by 31. Therefore 39j0 =l(mod31). 

Hence 39149 = 39303+29 = 3929(mod31). Further 39 = 8(mod31). Therefore in

In binary notation we obtain: 29 = 11101. Hence, for an arbitrary natural a we have 
a29= a 2 ■a 2 -a2 -a. Further, 394 = 84 s=22(mod31). Therefore,
398 = (394)2 = 42(mod31). Then 3916 =(398)2 = 162(mod31) = 8(mod31). Hence, 

3929 = 8 • 16 • 4 • 8(mod31) = 4 • 4 • 8(mod31) = 4(mod31).
Thus, the remainder in division of 39149 by 31 is 4.

Problems for Classroom 
Problem 1.1. Find the canonical decomposition for numbers 

a = 627, b = 399.

then the congruence can be reduced by it: — = mod
d \ d  ) )

rs r\
accordance with the fourth property of congruences we have 39 = 8 = 2(mod 31).

Solution.
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627 3 399 3
209 11 133 7
19 19 19 19
1

Hence 627 = 3-11-19, 399 = 3-7-19.

Problem 1.2. Find GCD(627, 399) using:
a) the Euclidean algorithm; b) the prime decomposition.
Solution. Let use the Euclidean algorithm:
627 = 399 • 1 +228;
399 = 228 • 1 + 171;
228 = 171 -1 + 57;
171 = 57* 3. Hence GCD (627; 399) = 57.
We find GCD(a, b ) using the prime decomposition of numbers a and b 

obtained in the solution of Problem 1.1:
627 = 3-11- 19; 399 = 3 - 7 • 19.

Hence, the greatest common divisor is equal to the product of the same factors 
in the decomposition of the given numbers: GCD (627; 399) = 3 • 19 = 57.

Let find GCD(a, b ) by the subtraction method:
627-399=228; 399-228 = 171; 2 2 8 - 171 =57; 171-57= 114 ;
114 -  57 = 57; 57 -  57 = 0. Hence, GCD(627; 399) = 57.
Problem 1.3. Using the extended Euclidean algorithm find integers u, u , 

satisfying the Bezout’s identity: a и + bv = GCD (a, b) for the integers 
<я = 110; b = 48.

Solution. At first we find GCD (110, 48) by the Euclidean algorithm:
110 = 4 8 -2 + 1 4 ;
48= 14 -3 + 6;
14 = 6 -2  + 2;
6 = 3 -2 . Hence, GCD (110, 48) = 2.
Now we construct the Bezout’s identity for the given a and b :
110 = 48 • 2 + 14; therefore 14 = 110 + 48 • (-2);
48 = 14 ■ 3 + 6; therefore 6 = 48 + 14 ■ (-3);
14 = 6 • 2 +2; therefore 2 = 14 + 6 • (-2). In this equality we substitute the 

above expression for 6 and combine like terms relatively 48 and 14.
So 2 = 14 + 6 • (-2) = 14 + (48 + 14 • (-3))( -2) = 14 • 7 + 48 • (-2).

Substituting the above expression for 14 in the resulting expression for 
GCD(110, 48) = 2 we get 2 = 14 • 7 + 48 • (-2) = (110 + 48 ■ (-2)) 7 + 48 ■ (-2) = 110 
•7 + 48 -(-16)=  2.
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Problem 1.4.
a) represent the decimal number 137 in the binary numeral system. 
Solution. We iteratively divide 137 by 2:

1371 2
12 I 6 8 1 2

17 68 I 34 I 2
16 0 34 1 171 2

The required representation is formed by the remainders written in the reverse order:
137 = 100010012;

b) transfer the number 1 ООО 10012 to the decimal system:
1 0 0 0 1 0 0 12 =  (1 • 27 +  0 • 26 +  0 • 25 • 0 • 24 +  1 • 23 +  0 • 22 +  0 • 2 1 +  1 • 2 ° )  =

= 7 6 5 4 3  21 0.
(27 +23 +1)10 = 128 + 8 +1 = 13710;
c) transfer the number 10000 to base 8 number system:

10000 I 8
_8 1250 | 8

20 -8  1 156 | 8
16 45 8 1 19 l_ 8

40 40 76 16 1 2 1 8
40 50 72 3 0 1 o

0 48
2

4 2

1000010 = 234208.

Problem 1.5. Multiplication and addition in base 16 number system.
The hexadecimal numeral system uses numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 

letters А, В, C, D, E, F. Symbols А, В, C, D, E, F are used to represent the following 
decimal values: letter A -  value 10, letter С -  11, С -  12, D -  13, E -  14, F -  15.

Let construct Table 1.1 and Table 1.2 to perform arithmetic operations in the 
hexadecimal numeral system.
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Table 1.1 Hexadecimal Addition Table

+ 0 1 2 3 4 5 6 7 8 9 A В С D E F
0 0 1 2 3 4 5 6 7 8 9 A В С D E F
1 1 2 3 4 5 6 7 8 9 A В С D E F 10
2 2 3 4 5 6 7 8 9 A В С D E F 10 11
3 3 4 5 6 7 8 9 A В С D E F 10 11 12
4 4 5 6 7 8 9 A В С D E F 10 11 12 13
5 5 6 7 8 9 A В С D E F 10 11 12 13 14
6 6 7 8 9 A В С D E F 10 11 12 13 14 15
7 7 8 9 A В С D E F 10 11 12 13 14 15 16
8 8 9 A В С D E F 10 11 12 13 14 15 16 17
9 9 A В С D E F 10 11 12 13 14 15 16 17 18
A A В С D E F 10 11 12 13 14 15 16 17 18 19
В В С D E F 10 11 12 13 14 15 16 17 18 19 1A
С С D E F 10 11 12 13 14 15 16 17 18 19 1A IB
D D E F 10 11 12 13 14 15 16 17 18 19 1A IB 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A IB 1C ID
F F 10 11 12 13 14 15 16 17 18 19 1A IB 1C ID IE

Table 1.2
Hexadecimal Multiplication Table

X 0 1 2 3 4 5 6 7 8 9 A В С D Е F
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A В с D Е F
2 0 2 4 6 8 A С E 10 12 14 16 18 1А 1C 1Е
3 0 3 6 9 С F 12 15 18 IB IE 21 24 27 2А 2D
4 0 4 8 С 10 14 18 1C 20 24 28 2C 30 34 38 ЗС
5 0 5 A F 14 19 IE 23 28 2D 32 37 зс 41 46 4В
6 0 6 С 12 18 IE 24 2F 30 36 3C 42 48 4Е 54 5А
7 0 7 E 15 1C 23 2A 31 38 3F 46 4D 54 5В 62 69
8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 0 9 12 IB 24 2D 36 3F 48 51 5A 63 6С 75 7Е 87
A 0 A 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8С 96
В 0 В 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9А А5
С 0 С 18 24 30 3C 48 54 60 6C 78 84 90 9С А8 В4
D 0 D 1A 27 34 41 4E 5B 68 75 82 8F 9С А9 В6 СЗ
E 0 E 1C 2A 38 46 54 62 70 7E 8C 9A А8 В6 С4 D2
F 0 F IE 2D 3C 4B 5A 69 78 87 96 A5 В4 СЗ D2 Е1
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Now let consider on a n example how two numbers can be added directly and 
with Table 1.1.

%A91 F  
+ 29873

S41F2
F  + 3 = 12 (write down 2, transfer 1 to the senior level);
7 + 7 = E  + 1 = F  (write down F  in the sum);
9 + 8 = 11 (write down 1, transfer 1 to the senior level);
A + 9 + 1 = 13 + 1 = 14 (write down 4, transfer 1 to the senior level);
8 + 2 + l = /l + l = 5  (write down В ).
Table 1.1 is used as follows: the first addend (in the given example F, 7, 9, A  

or 8) is found in the top row of the table; the second addend 
(in the given example accordingly 3, 7, 8, 9 or 2) is found in the leftmost column, and 
the sum of numbers is found at the intersection of columns and rows:

7 A C 9 3 . F 9 4  
+ 9 C 7  8 F . F 8 9

11 7 4 2  3 . F I  D
Addition table (see Table 1.1) can be used as subtraction table:

_ 13086 
8988

A6FE
6 - 8  (subtract the ones columns. Since we can’t subtract 8 from 6 we need to 

borrow “1” from the tens column. Our “6” in the ones column becomes “16”. The 
“8” in the tens column becomes “7”);

10 + 6 — 8 = 16 — 8 = E;
7 - 8  (subtract the tens column. Since we can’t subtract 8 from 7 we need to 

borrow “1” from the hundreds column. The hundreds column contains 0. Therefore we 
need to borrow “1” from the next column to the left. As a result “1” from the fourth 
column becomes “10” for the third column; “7” in the tens column increases to “17”. “3” 
in the fourth column is replaced by “2”; “0” in the hundreds column becomes “F”);

10 + 7 -  8 = 17 -  8 = F;
F - 9 = 6;
2 - 8  (subtract the fourth column. Since we can’t subtract 8 from 2 we need to 

borrow “1” from the fifth column. “2” in the fourth column becomes “12”);
10 + 2 - 8  = 1 2 - 8 = ^ .
To find the difference between two numbers with Table 1.1 we find the 

subtrahend in the top row, find the minuend in the column corresponding to the 
subtrahend, and take the difference in the leftmost column in accordance with the 
minuend.

The multiplication is carried out as follows: 8 -4  = 20 (write down 0, carry 2 
to the senior level).
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8-9 = 48 + 2 = 4 A (write down A, transfer 4 to the hundreds level);
10=A
12=C

8
7
7
7
3
3
3

•7 = 38 + 4 = 3C (write down 3, write down C);
■ 4 = 1C (write down C, carry 1 to the senior level);
•9 — 1 = 3F  +1 = 40 (write down 0, transfer 4 to the senior level); 
■7 + 4 = 31 + 4 = 35 (write down 3, write down 5);
• 4 = С (write down Q;
•9 = 1 В  (write down B, carry 1 to the senior level);
•7+1 =15 + 1 = 16 (write down 1, write down 6).

Let sketch the scheme of solution (we use table 1.2):

X . . . 8 X . . . 7
1 i

4 —» 20 4 —► 1C
4 1

7 -> 38 7 —> 35
4 1

9 —> 48 9 —► 3F

X . . . 3
1

4 — ► С
1

7 — > 15
i

9 - > IB

Problem 1.6.
a) find the remainder in division of 2100 by 3.
Solution. The first method: the remainder when 2 is divided by 3 is 2, the 

remainder when 22 is divided by 3 is 1. If we continue to raise 2 to the power and 
divide it by 3 we find that the remainders alternate: 2, 1, 2, 1, 2 ... . Due to evenness 
of 100 the remainder of division of the required number by 3 is equal to 1.

The second method: using congruences and arguing as in Example 1.6 we see:
,100 = 450 = (3 + 1)50 = l50 = 1;

b) find the remainder of 1989 • 1990 -1991 + 19923 upon division by 7. 
Solution. Replace every number with its remainder of division by 7:

1989 |_7 
14 1284 
_58 

56 
29 
28 

1

1990
14
_59

56
_30

28
2

_7
284

1991 = 7 • 284 + 3;

1992 = 7-284 + 4.

1 • 2 • 3 + 4J = 6 + 64 = 70. 70 : 7 = 10. Hence the remainder is equal to 0.
c) find the remainder in division of 9 by 8.
Solution. Replace 9 with its remainder 1 of division by 8. We have l 100 = 1.

Hence the remainder of division of 9100 by 8 is equal to 1;
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d) find the remainder of 31989 upon division by 7.
Solution. The remainder when 3 is divided by 7 is 3. The remainder when 32 is 

divided by 7 is 2. Further it is sufficient to multiply the remainder by 3 and make a
conclusion. The remainder when 33 is divided by 7 is 6, the remainder when 34 is 
divided by 7 is 4, the remainder when 35 is divided by 7 is 5, the remainder when 36 
is divided by 7 is 1, the remainder when 37 is divided by 7 is 3. We got one of the 
previous remainders, i.e., we have a cycle. The number 37 has the same remainder 
upon division by 7 as 31. Therefore the length of the cycle is 6. 1989 = 331-6 + 3. 
The number 31989 gives the same remainder upon division by 7 as 33, i.e., 6.

Self Instructional Problems for Laboratory Study № 1 «Number Theory»
1. Find the canonical decomposition of the integers a and b.
2. Find GCD(a,Z>) using:
a) the Euclidean algorithm; b) the prime decomposition of integers.
3. Using the extended Euclidean algorithm find integers и, и satisfying 

Bezout’s identity: au + b v -  GCD (a, b).
4. Represent the given decimal number с in base q , 16, and 2 numeral systems.
5. Evaluate ... in base 16 numeral system.

Variant 1.
1-3. a = 101398751, b=  326147777. 4. q = l ,  c = 972405821.

A2 - D  BC
5. Evaluate the determinant - 3 В  1F  5 С

- E A  18 98

6. Find the remainder in division of 1998 2001 by 29.

Variant 2.
1-3. a =5999801, 3=48685811. 4. q = 5, c = 5999801

J DAx — F y -  8,
[20x + 83; = 90.

6. Find the remainder in division of 2005 2003 by 17.

5. Solve the system of equations

Variant 3.
1-3. a =660422941, b=  36481301. 4. q = 8, с = 5999801

\Dx -  F ly  = -6F ,
5. Solve the system of equations

Bx + 6 \y  = NF.

6. Find the remainder in division of 20012005 by 17.
13



Variant 4.
1-3. a=  9002242397, b =433817903. 4. q = l ,  с = 5090801 .
5. Evaluate the product of two matrices:

f  BF - З А  C D V  A\ BB - 1 7 л
10 3 £  - F 2  

- 9 0 у V

-  AD CF 9 E  
2 A - B A  FB

6. Find the remainder in division of 2004 2998 by 19.

Variant 5.
1-3. a=  9118515943, b = 3386496689. 4. q = l ,  с = 75928301
5. Evaluate the product of two matrices:

f  B3 - 3  В F D ' f CA BF - E T
A0 IE -F A -A C D F BO

[ - 9 C BE DA j 1A - B C 3 В  ,

6. Find the remainder in division of 199 9 2005 by 23.

Variant 6.
1-3. a = 5336161097, b = 196210799. 4. q = 9, с =73425826.

AB - 2 D  FC
5. Evaluate the determinant - 3 С A F  BC  .

- E F  IA A8

6. Find the remainder in division of 1998 2001 by 19.

Variant 7.
1-3. a = 7049964661, b = 168687989. 4. q = 7, с = 93475825.

2B - A D  BC
5. Evaluate the determinant - 9 С 4̂8 2?6 .

- E E  4 С AF

6. Find the remainder in division of 1997 2004 by 17.

Variant 8.
1-3. a=  83748733, b=  73435591. 4 .^  = 7, c =  86425836.



5. Evaluate the determinant
IB  - 2 D  FC  

- 3  С A F  BE  
- E 3  10 AS

6. Find the remainder in division of 1996 2003 by 11.
Variant 9.

1-3. a=  16254559, b=  1029073. 4. q = l , c=  86425836.

5. Evaluate the product (Fx2 +1 Ax  -  3F )(C x2 -  ABx + E 3 ) .

6. Find the remainder in division of 20061998 by 19.

Variant 10.
1-3. a=  6099377, b=  9568217. 4. q = 8, c=  87625859.

5. Evaluate the product (F ix 2 + BAx -  35)(CAx2 -  A3x + E D ) .

6. Find the remainder in division of 20101999 by 17.

Variant 11.
1-3. a =  7957549, b=  23118553. 4. q = l , c=  89605809.

5. Evaluate the product (B 5x2 + CAx -  3A)(CDx2 -  ABx + E 9 ) ,

6. Find the remainder in division of 20051999 by 19.

Variant 12.
1-3. a=  16088437, b=  18216949. 4. q = l , с = 38615802.

5. Evaluate the product (5^x2 + CBx -  2A)(CEx2 -  A8x + E F ) .

6. Find the remainder in division of 1995 2004by 16.

Variant 13.
1-3. a = 244604911, b=  61875907. 4 .^  = 8 , с = 79605819.

5. Evaluate the product {F 5x2 + CBx -  BA)(C5x2 -  AOx + F 9 ) .

6. Find the remainder in division of 20111999 by 17.

Variant 14.
1-3. a =  356216713, b = 31238065. 4. q = l ,  c =  85678539.

5. Evaluate the product (45x2 + C2x -  3B)(C5x2 -  FBx + E 0 ).

6. Find the remainder in division of 2005 2004 by 19.
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Variant 15.
1-3. a = 7409621, b = 6793883. 4. q = 7. с = 9605801.

5. Evaluate the product (A 5x2 + CCx — 5 A)(CFx2 -  5Bx + E F ).

6. Find the remainder in division of 2005 2002 by 29.

Laboratory Study № 2 «Residue Classes»

Necessary Theoretical Data

When we divide an arbitrary integer by a natural number m > 1 we obtain one of 
m different remainders: 0,1,2,...,m - 1. In accordance with these remainders the set 
of integers Z is divided into m disjoint classes of integers having the same 
remainder when divided by m . Such classes are called congruence classes modulo Ш 
or residue classes modulo Ш. Depending on the remainders upon division by m the
residue classes are denoted as 0, 1, ...,m  -1 . Thus we have class i = (mq + i \ q e Z ) 
for every integer i -  0,l,2,...,m -1 . Every residue class is uniquely defined by any its 
representative: for every natural number mq + i the class is mq + i = i . The set of 
congruence classes modulo Ш is denoted as Z / mZ. From the above it follows that 
Z / mZ has Ш elements and can be written as Z /m Z  = jo, 1 1}.

By the second property of congruences (see theoretical data for the first 
laboratory study) we obtain that for arbitrary classes k , l  e Z /m Z  and for arbitrary 
kx, к2 6 к, / j , 12 e / the sums kx + /, and k2 + 12 are congruent modulo m . Therefore 
k] + /, and k2 + 12 belong to the same class Z / m Z . In a similar manner the products 
kx • l\ and k2 • /2 lie in the same class from Z / mZ. Let define addition and 
multiplication on Z / mZ. For any two residue classes k e Z / mZ, I e Z / mZ we 
determine a sum class k® l so that the sum k + l lie in the sum class for any 
k e k , l  e l . Similarly for any two residue classes к e Z  / mZ, I e Z / mZ we define a

product class к I so that the products к - I lie in the product class for any 
к e k , I g / .

Since addition and multiplication in Z / mZ are uniquely determined by addition 
and multiplication of class representatives, properties 1 - 5  of addition and 
multiplication of integers (see theoretical data for the first laboratory study) are also 
valid in Z / m Z :

1) к  ® i = i ® k\ Ik  -  k l -  commutativity;

2) к ® (I ® r) = (k ® l)@  r; k (lr )  = (k l)  r -  associativity;
16



3) there exists the identity element (or the neutral element): 
k ® 0 - k \  k l  = k ;

4) for every к e Z / mZ there exists a unique class / , such that к ® / = 0 . It 
is obvious that l=m — k;

5) {k 0  /)  r = (kr ) ® (Jr) -  distributive law.
As the operations of addition and multiplication in Z / mZ have the properties 

mentioned above Z lm Z  belongs to the class of commutative rings with a 
multiplicative identity and is variously called quotient ring, factor ring, residue class 
ring or simply residue ring of Z modulo m.

Definition 2.1. An element к  e Z / mZ is called invertible if there exists a class 
/ <e Z  / mZ such that k l = 1. The class I is called the inverse class of к .

From the associative law for Z / mZ it follows that if к is an invertible class, 
then the inverse class is uniquely determined.

Lemma 2.1. Let k & Z /  mZ be a class such that GCD(k, m) = 1. Then:

1) for any l Ф 0 we have k l  Ф 0 ;

2) к • Z[ Ф к • I2 , if /j /2 j

3) the mapping / : x  —> к ■ x  is injective and hence bijective on the set Z / mZ 
(on the set of nonzero elements from Z  / m Z );

4) к is invertible in the ring Z lm Z .
Remark. Under the conditions of Lemma 2.1 we have GCD (d,m) = 1. 

Therefore according to the coprimeness criterion there exist integers u, v eZ su ch

that ku+mv = 1. Then 1 = ku + mv = ku. Hence й  is the inverse class for к .
Lemma 2.2. Let к e Z / mZ be a class such that GCD (k,m) = d >  1. Then:

1) there exists a class 1 ^ 0  such that k l  = 0 ;

2) there exists classes such that к -lx = к - l2;

3) for all / Ф 0 we get к -l Ф 1, i.e., the class / is not invertible in the ring 
Z  / mZ.

Theorem 2.1. A class к & Z / mZ Z l m Z  is invertible iff GCD(k, m) = l. I f  
m = p  is a prime number then every nonzero class in Z  / pZ  is invertible. An inverse 
class is also invertible. The product o f invertible classes is also an invertible class.

Since Z / mZ consists of finite number of elements, addition and multiplication 
can be set elementwise in the form of tables.

Example 2.1. Let write down the addition and multiplication tables for the ring 
Z /3Z

____ ____ ____

© 0 1 2

0 0 T 2

_ _ _
(8) 0 1 2
0 0 0 0

17



_ _ _ —
1 1 2 0
2 2 0 I

_ — _ _
1 0 1 2
2 0 2 I

From the multiplication table it is immediately clear that classes 1 and 2 are 
inverse of themselves, i.e., all nonzero classes of Z /3Z  are invertible in full 
accordance with Theorem 2.1.

Definition 2.2. The Euler’s totient function (Euler function phi, the totient, 
Euler’s phi function, the phi function) (p(/w) is a function of a natural argument 
m > 1, counting the number of integers which are less than or equal to m and 
coprime to m .

Here are the basic multiplicative properties of the Euler’s totient function.
Property 1. ф (p) = p  — 1 for any prime p.

Property 2. q ( p n) = p n -  p n~l for any prime p  and an arbitrary natural 
number n > 1.

Property 3. If GCD (n, m) = 1 then ф (n ■ m) = ф (n) • ф (m ) .

Property 4 .I f  n = p xl /?22 ••• p St l is a canonical decomposition of л then

(  1 Vф (n) = n 1-----
V PiJ

1 1-
P tJP iJ

Example 2.2. Let calculate ф (48). From the obvious equality 48 = 3 • 24 and 
property 4 we get ф (48) = 48 ■ (1 -1  / 3) • (1 -1  / 2) = 16.

Example 2.3. Theorem 2.1 implies that there are exactly ф (т )  invertible 
classes in the ring Z / m Z . For example, ф(12) = 4. Hence there are exactly 4 
invertible elements in the ring Z /12Z . Direct verification shows that these classes 
are 1, 5, 7,11.

Theorem 2.2 (Euler’s’ theorem). I f  m is a natural number and a is a positive 
integer coprime to m then d p{m ) = 1 (mod m).

An equation of the form
anx n + a "”1 +... + axx  + a0x° = 0 (mod m), 

where an, an_x, ..., a0 e  Z, n e N ,  ап ф О (т ойт ), is called an algebraic 
congruence equation of the «th degree and one unknown x

Assume that when we substitute x0 instead of x in a congruence we get a 
correct numeric congruence. In this case x0 is called a solution of the congruence. At 
the same time any integer of the form x0 + mt is also a solution of the congruence. 
Therefore the residue class x0 can be considered as a solution of the algebraic 
congruence. The universal method to solve the algebraic congruence is to examine it 
with a complete system of residues modulo m , i.e., integers 0,1, 2, — 1. The 
number of solutions of the congruence is equal to number of elements which belong 
to the complete residue system and satisfy the congruence.

18



Example 2.4. Solve the congruence x 5 + x +1 = 0 (mod 7).
Solution. Let consider the complete system of residues modulo 7: 0,1, 2, 3, 4,

5, 6. Substituting the elements of this system into the congruence we obtain that only 
two numbers x  = 2, x  = 4 satisfy the congruence. Therefore the given congruence 
has two solutions: x = 2(mod 7), x = 4(mod 7).

While solving a congruence it is convenient to use transformations leading to 
equivalent congruences.

Problems for Classroom 
Problem 2.1. Compute ср(я) for all natural numbers n from 2 till 12.
Problem 2.2. Compute ф(60), ф(81), cp(89), ф(2017), cp(2018).

Solution. 60 = 2 • 3 • 5. By the property 4 of the Euler’s totient function we
have

(  I V  I V  П  1 2  4 
cp(60) = 60 1—  1—  1—  = 60 —  — • — = 2- 2- 4 = 16.

\  2 у \  5 у 2 3 5
81 = 34. Therefore in accordance with property 2 of the Euler’s totient 

function, we obtain
Ф (81) = 34 -  33_1 = 34 -  33 = 81 -  27 = 54.

V89 < 10; 89 is not divided by 2, 3, 5, 7 (any prime number less than 10) without a 
remainder. Hence 89 is a prime number. Therefore ф (89) = 88.

Problem 2.3. Write down the addition and multiplication tables for the rings 
Z / 5Z and Z  / 6 Z . Find pairs of mutually multiplicative inverse elements in these 
rings. Calculate number of such pairs and compare this number with ф(5) and ф(6) 
respectively.

Solution is similar to the solution of Example 2.1.
Problem 2.4. Find the inverse element for every invertible element in the 

residue class ring modulo 15.
Solution can be obtained by writing down the multiplication table in the ring 

Z /15Z. Let consider another way to solve this problem.
By Theorem 2.1 there are ф(15) = 8 residue classes comprime to modulo 

m = 15 in the ring Z /1 5 Z . Direct verification shows that these classes form the set 
G = { i , 2 , 4 ,7 , 8 ,n ; i l , l4}.

In terms of congruences the equality a • x = 1 in case of a  e  G looks like 
ax = \ (mod 15). From Euler’s theorem it follows that a s = 1 (mod 15). Multiplying

both sides of the congruence ax = 1 (mod 15) by a , we get x  = a (mod 15) in 
accordance with congruence properties. Successively we compute:

27 = 23 • 24 = 8 • 16 = 8 (mod 15). Therefore (2) = 8;

47 = 4 6 -4 = 163 -4 = 4 (m odl5). Hence (4)-1 = 4 ;
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7 7 = 493 - 7 = 43 - 7 = 13, (7)-1 = 13;

I I 7 = 1213 -11 = I3 -11 = ll(m odl5), ( l l )"1 =11;

147 = 27 • 77 s  8 • 13(mod 15) = (-7) • (-2)(mod 15) = 14(mod 15); ( н )_1 = 14.

Problem 2.5. Find the inverse elements for the classes 5, 6, 7 in the ring:
a) Z /2016Z ; b) Z /2017Z .

Solution. GCD (2016,5) = 1. Let find this greatest common divisor by the 
Euclidean algorithm: 2016 = 5-403 +1. From the last formula we can easily obtain 
Bezout’s identity for GCD(2016,5) = 1: 1 = 2016 • 1 + 5 • (-403). In accordance with

the remark to Lemma 2.1 we have: 5-1 = — 403 = 2016 -  403 = 1613. Verification:

5-1613 =8065 = 2016-4  + 1 = 1 (m od2016).
GCD (2016,6) = 6 > 1. Therefore 6_1 does not exist in the ring Z  /2016Z .

Self Instructional Problems for Laboratory Study № 2 «Residue Classes»
1. Write down the addition and multiplication tables in the rings:
a) Z /k Z \  b) Z  / nZ.
2. Compute cp(&), ср(л) for к, n from the first problem; compute cp(ra) for the 

integer m from the fourth problem.
3. Find pairs of mutually multiplicative inverse elements in the rings Z / k Z  

and Z / nZ  from the first problem.
4. Find the inverse elements for classes 5, 6, 7 in the ring Z / m Z .
5. Solve the congruence.

1. A: = 11; « = 24. 4. m = 2001. 5. 132x3 + 143x2 + 23x-19  = 5 (mod 11).

1. k = 13; и = 18. 4. m = 2002. 5. 169x3 + 143x2 + 23x-19  = 5 (mod 13).

k = 23; n - 12. 4. m = 2000. 5. 253x3 +46x2 + 2 9 x -4 9  = 5 (mod 23).

6. Solve the system of equations in the ring Z / n Z :

7. Solve the equation x 2 + 5x + 7 = 0 in the ring Z / kZ .

Variant 1.

Variant 2.

Variant 3.
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Variant 5.

1. k = 19; n = 26. 4. m = 2004. 5. 132x3 + 143x2 + 23x-19  = 5 (mod 11).

Variant 6.

1. к = 13; « = 27. 4. m = 2005. 5. 117x3 +143x2 + 3 x -1 9  = 5 (mod 13).

Variant 7.

1. k = 7; n = 28. 4. m = 2006. 5. 63x3 +154x2 + 2 3 x -1 9  = 5 (mod 7).

Variant 8.

1. k = 29 \n  = 12. 4. m = 2007. 5. 319x3 +145x2 + 2 3 x -1 9  = 5 (mod29).

Variant 9.

1. к = 23; « = 14. 4. m = 2008. 5. 253x3 +115x2 + 1 2 x -9  = 5 (mod 23).

Variant 10.

1. к = 31; « = 12. 4. m = 2009. 5. 341x3 +155x2 + 2 3 x -1 9  = 5 (m od31).

Variant 11.

1. к = 17; « = 30. 4. m = 2010. 5. 85xJ + 204x2 + 1 3x -19  = 5 (mod 17).

Variant 12.

1. k = 29; « = 9. 4. m = 2011. 5. 145x3 +348x2 + 2 3 x -1 7  = 5 (mod29).

Variant 13.

1. к = 17; « = 22. 4. w = 2012. 5. 153x3 +187x2 + l l x - 9  = 5 (m odl7).

Variant 14.

Variant 4.

1. A: = 17; и = 21. 4. m = 2003. 5. 187xJ + 34x2 + 23x-19 = 5 (mod 17).



1. £ = 19; « = 14. 4. т = 2013. 5. З61х3 + 209х2 + 23х-11 = 5 (mod 19).
Variant 15.

1. k = 16; « = 23. 4. т = 2014. 5. 95xJ + 228х2 + 2 3 х -9  = 5 (mod 19).

Laboratory Study № 3 «Group Theory»
Necessary Theoretical Data

Definition 3.1. A group is a nonempty set G, equipped with a binary operation 
(•), such that the following conditions hold:

1) associativity: a-(b-c) = (a-b)-c for all a, b, с e G;
2) there exists an identity element (neutral element), i.e., there exists an element 

e e G such that g ■ e = e ■ g  = g  for all g  e G ;
3) for every element g e G  there exists an inverse element, i.e., an element

h e G such that g  ■ h = h- g  = e (written h = g~l).
The groups are distinguished by the number of elements and properties of the 

binary operation (commutative and noncommutative) in accordance with the 
following

Definition 3.2. A group G is said to be commutative or abelian if the operation 
defined on it has (in addition to properties 1) -  3)) property-

4) b • a = a ■ b for all a, b e G.
Definition 3.3. The number of elements in a finite group G is called the order of 

G , denoted by |G|.
Traditionally all additive groups (with addition operation) belong to the class of 

commutative groups. For every natural number n there exists a commutative finite 
group of order n. For example, (Z / nZ, +).

Theorem 3.1. Let a be a fixed element o f an arbitrary group G. Let 
< a >  = { a ) = e, a, a 2, ..., a l ,a  2,...}  be the set o f all possible powers o f the 
element a. Then <a> is an abelian group.

Definition 3.4. The group <a>  from Theorem 3.1 is called the cyclic group 
generated by the element a .

Theorem 3.2. Let an element a e G has the property. an = e for some integer 
n and ак Ф e for all integers к, 1 <k<n. Then the cyclic group < a>  has order n

and < a >  = {a, a 2, ..., a n = e j .
Definition 3.5. The value n from Theorem 3.2 is called the order of the element 

a gG. If no such n exists for an element a e G  we say that a e G  has infinite order.
From Definition 3.4, it follows that any cyclic group is abelian, contains a 

countable or finite set of elements, and in the second case has a clear structure, 
expressed by Theorem 3.2.

Theorem 3.3. For every prime p the set o f nonzero congruence classes in the
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residue class ring Z  / pZ  form a group Z  / pZ* under multiplication and this group 
is cyclic.

Let Q be a finite set of n elements. Since the nature of its elements is not 
essential, it is convenient to suppose that Q  = {1, 2,..., n }.

Definition 3.6. Every bijection, i.e., a one-to-one correspondence from Q to 
itself, is called a permutation of Q .

It is convenient to present a permutation / : i —» f  (i), i = 1, 2 ,..., n, in the

form of a table with two rows: /  = In this table one lists
f (  1) /(2 )  ... f ( n l  

numbers 1, 2 in the first row and their image under permutation below it in the 
second row. The composition of two permutations is just the composition of the 
associated functions: (g f)(i)  = g ( f  (0)- This composition is called the product of 
permutations. Most often g f  Ф fg ,  i.e., the product of permutation is not

( l 2 ... n \
commutative. Obviously the identity permutation e = is the neutral

\ l  2 ... П;
element for this product. Since composition of functions is associative, the product of 
permutations is associative too. For every permutation there exists the inverse one. 
To find the inverse permutation / -1 it is sufficient to interchange two lines in the

(  1 2 ... n Л 
table and then sort columns so that elements of the first

l / ( i )  m  ... m )
row are placed in ascending order.

Thus, the set of all permutations of Q forms a group under product of 
permutations. It is called the symmetric group on n elements and is denoted by S n.

Theorem 3.4. The symmetric group Sn has order n\.
Let /  be an arbitrary permutation from Sn. We delete columns with the same 

elements from the table with two rows specifying / .
Definition 3.7. A cycle of length A: is a permutation of the form

*■ / ( , )  ... / ' ‘ -'(O'*
Л 0  / 2(0  -  i

A cycle of length 2 is also called a transposition. Cycles without common elements 
are called independent cycles or disjoint cycles.

Theorem 3.5. Every permutation f  g Sn can be decomposed into a product 
o f disjoint cycles o f length I >2. This representation is unique up to the order o f the 
cycles.

Theorem 3.6. Every permutation f  e Sn can be expressed as a product o f  
transpositions. Any two decompositions o f f  contain either even or odd number o f 
transpositions.

Example 3.1. Factor the following permutation into a product of cycles and 
transpositions:
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J \  2 3 4 5 6 7 8  9̂  
g ~{2  4 5 3 1 7 9 6  8y

Solution.
S = (l 2 4 3 5)(6 7 9 8) = (1 5)(1 3)(1 4)(1 2)(6 8)(6 9)(6 7).

Decomposition of a permutation into a product of transpositions is not unique. 
For example, the above permutation can be expressed as the following product of 
transpositions:
Г ( 1  2 4 3 5X6 7 9 8) = (1 5)(1 3)(1 4)(1 2)(6 8)(3 4)(6 9X3 4X6 7).

Definition 3.8. A permutation /  is called even (odd) if it can be written as the 
product of even (odd) number of transpositions.

Problem 3.1. Give ten examples of a group. Why do you think that this is r e a l ly  

a group? Is this an abelian group? Is your group finite?
Problem 3.2. Determine whether the set С of all complex numbers having unit 

absolute value form a group under multiplication.
Solution. 1) z x • (z2 ■z3) = (zl • z 2) • z3 holds for any complex numbers;

2) for all complex number z we have z • 1 = 1 • z = z . Hence e = 1* is the identity;
3) for every z = x  + iy e С we have |z| = л]х2 + у 2 =1 by condition, i.e.,

Thus С is a group.
Problem 3.3. Determine whether the set of all positive real numbers is a group 

under binary operation of raising to the power.
Solution. The answer is no because the associative law is not valid for this

Problem 3.4. Factor the following permutation into a product of cycles and 
transpositions:

Determine the parity (oddness or evenness) of / .
Solution. The permutation f  moves 1 into 7, 7 into 2, 2 into 4, 4 into 1. By 

Definition 3.7 a permutation acting on 1, 7, 2, 4 in accordance with this rule and 
leaving all other elements unchangeable is called a cycle of length 4. In compliance 
with Definition 3.7 this cycle is shortly written as (1724). Also f  moves 3 to 3, 5 to
6, and 6 to 5. So the record /  = (1724)(3)(56) indicates how /  moves elements of 
the set {l, 2, 3, 4, 5, 6, 7 }. Since a cycle consisting of one element coincides with 
the identity permutation, it is usually omitted, i.e., f  = (1 7 2 4)(5 6) is the product

Problems for Classroom

9 9 _x  + у  = 1; therefore z = x  — iy is the inverse for z = x  + iy e  С :
_ _ 2 2

z • z = (x + iy) • (x — iy) = z • z = (x — iy) • (x + iy) = x  + у  = 1.

operation. For example, (23)4 = 212, and 2 (3  ̂ = 2 81.
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of cycles. Hence we obtain the decomposition of f  into the product of 
transpositions: /  = (1 4)(1 2)(1 7)(5 6). As we see /  is even.

/ \
Problem 3.4. Evaluate the product /  • g~x for f  -

3
2
6

4
2

6
7

and

<? =
'1 2 3 4 5 6 
7 3 2 6 4 1 5

Solution, g  1 = I. Then f - g  1 =
1 2 
7 5

1 2 3 4 5 6 7 
v6 3 2 5 7 4 l x 

Problem 3.5. Find the product of cycles and transpositions 
(3 2 8 9X1 6 8)(7 3X9 6 4 5Xl 9).

Solution.

(3 2 8 9X1 6 8X7 3X9 6 4 5)(l 9) = [ \  \  * *

4
1

6
2

6

4
7
2

8
1

9^
6

Problem 3.6. Write down the cyclic group generated by the permutation
1 2 3 4 5 6 7Л 

5 2 1 7  4/ = I

2
Solution, f  = 

f 4 =
'I

f S =

T

f l
5

/ 10 =

/ 12 =

3̂
1 2 3 4 5 

x5 7 1 6 3
2 3 4 5 6 7 |̂
2 5 4 1 6 7 j ;
2 3 4 5 6 7̂ j 
7 3 6 5 4 2 
2 3 4 5 6 7" 
2 1 4 3 6 7 /  
2 3 4 5 6 7̂1 
7 5 6 1 4 2 
2 3 4 5 6 7'
2 3 4 5 6 7

6
6
4

7Л
2 / 3 =

/ 5 = 

/ 7 = 

/ 9 =

(\

,1
'1

'1

ri
1

/ п =

2
4
2
6
2
4
2
6
2
4

3 4 5 6 
3 7 5 2 

3 4 5 6 7̂ 1 
2 3 7 4J 
4 5 6 7Л 
7 1 2  6 
4 5 6 
2 5 7 

5

7^
6

7Л
4

3
1

4
7

6
2

7Л
6

= е.

By Theorem 3.2 the group < /  > has order 12.

Problem 3.7. Determine whether the matrix A =
1 0 0
0 1 0
0 1 1

with elements from

the residue class ring Z  H Z  is invertible.
Solution. Let find the determinant of A: det^4 = 1 ^ 0 . Hence matrix A is 

invertible.
Problem 3.8. Write down the cyclic group generated by the matrix from the 

previous problem and determine its order.
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Solution. A 2 =
0 (Г f i 0 0" ( \ 0

0 1 0 0 1 0 - 0 1 0

,0 1 К 1 I l o 0 ъ

= E . Thus

< A >= {a , A 2 = e ) has order 2.
Problem 3.9. Determine whether an additive group G is cyclic:
a) G is the group of real numbers;
b) G is the group of rational numbers.

Self Instructional Problems for Laboratory Study № 3 «Group Theory»
1. Determine whether the given set equipped with the operation is a group.
2. a) factor the permutation /  into the product of cycles and transpositions.

Determine its parity;
b) evaluate the commutator h = g~l f ~ xg f  for the given permutations /  and

g\
c) find the product of cycles and transpositions.
3. Write down the cyclic group < f  >. Determine its order.
4. Determine whether the matrix В with elements from Z /2 Z  is invertible.
5. Write down the cyclic group < B > . Determine its order.
6. Find / 100° for the permutation f  from Problem 2 and 5 IUUU for the matrix В 

from Problem 4.

1000

Variant 1
1. The set of integers, Z, with subtraction operation.

'1 2 3 4 5 6 7 8 9" a 2 3 4 5 6 7 8 9Л
v2 9 5 6 8 4 1 3 7,

СГ Oq II

u 1 8 6 9 7 3 2 s)2. a) /  =

c) (7 1 8 5)(4 6 3)(8 2)(9 1 3 5). 4. В =
( \  0 П  

1 1 1 
vl 1 0

Variant 2
1. The set of all positive real numbers with division operation.
„ w  f l  2 3 4 5 6 7 8 9^ U4 (1 2 3 4 5 6 72. a ) / =  ,  * n  i  -г о * о „ U b ) £  =

3 6 9 1 7 8 5 2 4 4 1 8 6 9 7 3 
(О 1 П

с) (3 1 9 5X4 2 3X8 9X7 1 6 5). 4. В =

Variant 3
1. The set of integers with operation m *n = mn + m.

2. a) /  =

1 1 0 
1 1 1

f l  2 3 4 5 6 7 8 91 f l  2 3 4 5 6 7 8 9Л
h  9 8 3 1 4 2 6 7J;  b ) g  = oo 6 9 7 3 2 5)
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с) (4 2 6 9X5 2 7X7 9X7 3 8 1). 4. В =
Г1 0 n
1 1 1

l l 0 o j

Variant 4
1. The set of integers with operation m * n = m + In. 

'1 2 3 4 5 6 7 8  9'  
9 6 2 8 1 3 4 7 52. a) /  = ; b ) *  = |

c) (2 4 9 5X1 3 7X5 8X7 1 3 6). 4 . 5  =

3 4 5 6 7 8
8 6 9 7 3 2 5 J ;

f ° 0 n
0 1 1 .

U 1 oj

Variant 5
1. The set of integers with multiplication. 

2- a) f  = [ \
3 4 5 6 7 8 9>i U4 ( l  2 3 4 5 6 7 8 9̂ 1
5 6 7 8 9 2 i j ;  b ) g

= U  1 8 6 9 7 3 2 з ) ;
( I 0 fj

•2 8X2 9X7 1 4 8). 4. B = 0 0 1 .

[o 1
Variant 6

1. The set of real numbers with division operation. 
'1 2 3 4 5 6 7 8 9' 
9 6 5 1 7 2 3 4 8

2- a) /  = ; b) g =

c) (7 3 9 5X4 1 3X8 6X9 1 2 5). 4 .B  =

3 4 5 6
8 6 9 7

Г1 0 n
0 0 1 .

l l 1 oj

Variant 7
1. The set of complex numbers with operation z x® z 2 = Vziz2

2- a) /  =
1 2 3 4 5 6 7 8  9 
9 8 1 6 3 7 4 5 2

1 2 3 4 5 6 7 8  9N
4 1 8 6 9 7 3 2 5 /  

(1 0 1л
с) (9 1 4 5)(3 2 7)(3 6)(7 2 6 8). 4. 5 =  0 0 1

[ l  1 ly

Variant 8
1. The set of complex numbers with division operation.
„ w  A  2 3 4 5 6 7 8 9 K ,  ( I  2 3 4 5 6 7 8  9N
2- a ) / =  ,  0 _ _ , _ ; b ) g  = \4 8 7 5 9 3 6 1 2 4 1 8 6 9 7 3 2 5
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с) (4 2 9 5X7 9 3)(6 1X8 6 5 1). 4 .5  =
( \  О П 

1 О О 
v0 1 1У

Variant 9
1. Determine whether the symmetric difference of two subgroups is a subgroup. 
„ w  f l  2 3 4 5 6 7 8 9^ u  П  2 3 4 5 6 7 8  9̂ i 
2' a ) /  = l 9 6 5 1 7 2 8 4 3 I; b ) ?  = ' 4 1 8 6 9 7 3 2 5y 

fO О П
c) (9 1 3 5X4 2 3X5 7X9 1 6 8). 4. В = 1 0 1 

V1 1 0y

Variant 10
1. Determine whether the relative complement of two subgroups is a subgroup.

2- a) /  =
1 2 3 4 5 6 7 8  9 
9 5 6 1 7 2 8 4 3 b) g =

1 2 3 4 5 6 7 8  9Л 
4 1 8 6 9 7 3 2  5. 

A  1 О
c) (8 1 9 5X1 2 3)(7 9)(4 1 6 5). 4. В = 1 0 1

V1 1 0y

Variant 11
1. Determine whether the union of two subgroups is a subgroup.

'1 2 3 4 5 6 7 8 9 \  b )g  = f 1 2 3 4 5 6 7 8  9>2. a) /  =
9 5 6 7 1 2 8 4 3 4 1 8 6 9 7 3 2 5,

fo  0 n
c) (4 1 9 5)(7 2 3)(2 6)(3 1 6 8). 4. В = 1 1 1

V1 0 0y

Variant 12
1. Determine whether the intersection of two subgroups is a subgroup.

(1 2 3 4 5 6 7 8 9 \  J \  2 3 4 5 6 7 8 9' 
'  J ~ 9 6 5 1 7 4 8 2 ЪУ ) 8 ~ \4  1 8 6 9 7 3 2 5.

c) (8 1 9 5)(9 2 3)(6 7)(7 2 4 5). 4. В =
(0  1 1 

1 1 1 
V1 1 oy

Variant 13
1. All complex numbers of the upper half plane with multiplication.
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2. а) /  = b) g = \

с) (1 6 9 5X2 4 7X3 9X6 1 7 8). 4. В =

1 2 3 4 5 6 7 8 9' 
4 1 8 6 9 7 3 2  5, 

/ 0 О П  
1 О о

V1 1 1,

Variant 14
1. All complex numbers of the right half plane with multiplication.

2. a) /  = b) g = \
2 3 4 5 6 7 8  9N 
1 8 6 9 7 3 2 5, 

A  1 1Л
с) (2 1 7 3)(4 9 3X4 7X5 2 6 9). 4 . 5  = 1 0 1 

V1 1 0y

Variant 15
1. All complex numbers of the lower half plane with multiplication.

2- a) /  = I
f l  2 3 4 5 6 7 8 9" f  1 2  3 4 5 6 7

00 9"
^9 6 5 1 7 2 4 8 3j

; b ) g  =
,4 1 8 6 9 7 3 2 5j

c) (8 3 9 5)(4 1 3)(7 9)(6 1 2 5). 4 .B  =
( \  1 1 

1 0 1 
V1 1 0y

Laboratory Study № 4 «Subgroups»
Necessary Theoretical Data

Definition 4.1. A subgroup of a group (G ,•) is a nonempty subset H  of G that 
forms a group under the same operation. A subgroup H  of a group G is called a 
proper subgroup if H  ^ G  and H  ф{е}.

Theorem 4.1 (subgroup criterion). A nonempty subset H  o f a group (G,•) is 
a subgroup iff a, b e  H  implies that a b~l e  H .

Typically each group has a lot of different subgroups. For example, various 
degrees of a fixed element of a group form a cyclic subgroup.

Theorem 4.2. Every subgroup o f a cyclic group is cyclic.
In every non-commutative group G a maximal subgroup of elements 

commuting with all elements of G is of interest. This subgroup is called the center of 
G and is usually denoted by Z(G); subgroups of Z(G) are said to be central 
subgroups of G .

Definition 4.2. Let H  be a proper subgroup of a group (G,.) and a e G .  Then 
the set aH = {a}\h  e  H } is called a left coset of H  in G .
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If there exists b e G ,  b ^ H ^ J a H  then it is possible to construct a new left 
coset bH and so on.

Similarly one can construct a right coset. If every left coset coincides with the 
corresponding right coset a H - H a  then the cosets are said to be two-sided. For 
example, in any abelian group every left coset is the same as the right one. Therefore 
every coset in an abelian group is two-sided. Cosets have a number of important 
properties.

Theorem 4.3. Let H  be a proper subgroup o f a group G. Then:
1) every element g  e G  belongs to some left-coset o f H  in G ;

2) two elements a,b e G  belong to the same left coset iff a~l -b e H ;
3) any two left cosets o f H  in G are either identical or disjoint;
4) for every a e G  orders o f sets a H  and H  are the same’,
5) G is a disjoint union o f left (right) cosets o f H ;
6) all left cosets and all right cosets o f H  in G have the same order.
Definition 4.3. For a subgroup H  of a group G the index of H , denoted

\ G : H \ ,  is the number of left cosets of H  in G (which is equal to the number of 
right cosets of H  in G ).

With properties of cosets the following crucial theorem in the theory of finite 
groups can be proved:

Theorem 4.4 (Lagrange’s Theorem). The order o f a finite group is divided by 
the order o f any its subgroup.

Corollary 7. In a finite group the index of any subgroup is the quotient upon 
division of the group order by the subgroup order.

Corollary 2. Groups of prime order are cyclic and do not contain proper 
subgroups.

Corollary 3. If G is a finite group of n elements, then for every a e G  it holds
an -  e . In other words the order of an element of a finite group divides the order of 
the group.

Definition 4.4. A subgroup H  of a group G is called a normal subgroup if for 
every a e G it holds aH  = H a .

Clearly, every subgroup of index 2 is a normal subgroup.

Problems for Classroom
Problem 4.1. Give examples of a subgroup in the group (Z,+). Determine 

whether the following set is a subgroup:
a) all negative numbers; all positive numbers;
b) all even numbers; all odd numbers;
c) set of integers from 0 to 10; from -5 to 5;
d) all integers divisible by 2009;
e) all integers with the remainder of 1999 when divided by 2009.
Problem 4.2. Give an example of subgroups a) in the group (C,+) of all

complex numbers with addition operation; b) in the group C *.
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Problem 4.3. Give examples of subgroups in the group GL„{R) of all 
nonsingular real square matrices of a given order n > 2. Find the center of this group.

Problem 4.4. How many subgroups are there in an arbitrary group? What is the 
minimal subgroup containing a given group element? What other elements of the 
group should it contain?

Problem 4.5. Determine whether the following set is a subgroup: a) the union 
of subgroups; b) the relative complement of a subgroup; c) the symmetric difference 
of two subgroups; d) the intersection of subgroups; e) the set of all к -th degrees of 
all elements of an abelian group.

Problem 4.6. In every group there are cyclic subgroups (sometimes they 
coincide with the group). Under what conditions does the group have noncyclic 
subgroups? Give examples.

Problem 4.7. Show that the multiplicative group Z /8Z* is abelian, but not 
cyclic, and Z / 9Z 8 is cyclic.

Problem 4.8. Let G = M lx4(Z /2 Z )  (a set of all row matrices with four 
coordinates from Z / 2 Z ) be a group under the operation of coordinate-wise addition 
modulo 2. How many elements are there in this group?

Let H  be the following subset of elements of the group G :

<(0 0 0 0),(1 0 1 1), (0 1 0 1), (1 1 1 0) 1,
'------ V------ ' '------v------' 4------v------ ' '------v------'

0 ei e2 el ■e2
here 0 = 0, 1 = 1. Make sure that Я  is a subgroup, write down the coset table of H  
in G .

Solution. Since each of the coordinates takes only two values (0 or 1), then G is 
a group of order 16.

It has been already discussed, that the operation of coordinate-wise addition 
modulo 2 is associative. If we add two elements from H  the result does not lead 
outside H , i.e., H  is closed under addition. H  contains the identity (it is the zero 
vector). Every vector from H  is inverse for itself. Thus, H  satisfies all axioms of the 
group definition. Hence H  is a subgroup of G .

Write down the coset table of H  in G :

№ Класс a + H a + 0 a + ex a + e2 а + (ех +e2)
1 0 + H  = H (0000) (1011) (0101) (1110)
2 (1000) + H (1000) (0011) (1101) (0110)
3 (0100) + H (0100) (1111) (0001) (1010)
4 (0010) + H (0010) (1001) (0111) (1100)

Problem 4.9. List all elements of the multiplicative group (Z / 36Z)*, compare 
the number of elements in this group with ф (36). Determine whether this group is

cyclic. Write down the coset table (Z / 36Z)* / < 25 > of the cyclic subgroup < 25 >
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in the group (Z /36Z )* .

Solution. G = (Z/36Z)* ={1,5,7,11,13,17,19,23,25,29,31,35}. <7=12.
2 2 I Iф(36) = ф(2 -3 ) = 12. Hence |G| = ф(36). G is cyclic if there exists an elemer.i

of order \G\, i.e., the cyclic group generated by an element coincides with the whole
group G. Let try to find such an element. At random we select 5 and write down the 
cyclic group < 5 >.

< 5>  = {5, 25, 53 =17, 54 =17-5 = 13, 55 =13-5 = 29, 56 =29-5 = l} is a 
subgroup of order 6. By Lagrange's Theorem all other elements of this subgroup have 
orders that are divisors of 6.

<7 > = {7, 72 =13,73 =13-7 = 19,74 =19-7 = 25,75 =25-7 = 31,76 =31-7 = 1 } 
is a subgroup of order 6. Hence, its elements 7, 19, 31, that do not belong to < 5 >, 

also have an order not exceeding 6.
<11 > = { ll,ll2 =13,113 =13 -11 = 35,l l 4 =11 -35 = 25,115 =25 -11 = 23,l l 6 =23 -11 = 1} 
is a subgroup of order 6. Hence, its elements 11, 23, 35, that do not belong to the 
subgroups < 7 > and < 5 > also have an order not exceeding 6. Thus all 12 elements 
of the group G have an order not exceeding 6. Therefore G cannot be a cyclic 
group.

Я  = < 25 > = {25,13,1} is a subgroup of three elements. Therefore the coset 

table (Z /36Z)* / < 25 > should contain 12 :3 = 4 cosets. The subgroup H  is a 
coset. Here are the remaining three cosets: 5H  = {5 • 25 = 17, 5 • 13 = 29, 5};

7 #  = {7-25 = 31,7-13 = 19,7}; П Н  = { l l -25 = 23,11-13 = 35,11}.

Problem 4.10. Does the group (Z/36Z)* contain anon-cyclic subgroup? 
Solution. Yes, it does. There are three elements of the second order in this

group: 17, 19, 35. These elements are inverse for themselves, because from the 
2 —1condition a = e we have a = a. Together with 1 these elements form a system 

closed under multiplication modulo 36 and hence they form a subgroup -  a non- 
cyclic subgroup of four elements.

Self Instructional Problems for Laboratory Study № 4 «Subgroups»
Variant 1.

1. Make sure that vectors 0(00000), «(10101), £(10011), c(00110t form a 
subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
3. List all elements of the multiplicative group of the ring: ai Z  17Z; b) 

Z /3 2 Z . Compare the number of elements in this group with <p(l7) and ^(32) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
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a) (Z /17Z )* /< 4> ; b) (Z /32Z)*/<17> .
5. Does the group Z  / 32Z contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory

work № 3, is normal in the group S 9?

Variant 2.
1. Make sure that vectors 0(00000), a(10110), 3(11001), c(01111) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z/ 2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /1 9 Z ; b) 

Z /3 0 Z . Compare the number of elements in this group with cp(\9) and <p(30) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /1 9 Z )* / < 7 >; b) (Z /3 0 Z )* / < 17 >.
5. Does the group (Z / 30Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S 9?

Variant 3.
1. Make sure that vectors 0(00000), a (10110), 3(10101), с (00011) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /1 3 Z ; b) 

Z /3 4 Z . Compare the number of elements in this group with < (̂13) and < (̂34) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /1 3 Z )* / < 3 >; b) ( Z /3 4 Z ) * /< 19 >.
5.Does the group (Z /34Z ) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group 5 9?

Variant 4.
1. Make sure that vectors 0(00000), a  (11000), 3(10110), с (01110) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
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3. List all elements of the multiplicative group of the ring: a) Z /11Z ; b) 
Z  / 28Z . Compare the number of elements in this group with ф (11) and ф (28) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z/11Z)* / <  10 >; b) (Z /2 8 Z )* /< 17 > .

5. Does the group (Z / 28Z)* contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9 ?

Variant 5.
1. Write down all elements of the subgroup generated by vectors 

a(11011), (11100), с (00111) in the additive group V5 of five-dimensional
vectors with coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /1 8 Z ; b) 

Z /3 1 Z . Compare the number of elements in this group with ф(18) and ф(31) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z/31Z)* / < 26 >; b) (Z/18Z)* / < 17 > .
5. Does the group (Z 18Z) * contain a non-cyclic subgroup?
6. Is the subgroup < f  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S 9 ?

Variant 6.
1. Write down all elements of the subgroup generated by vectors 

a  (11001), 6(10110), с (01111) in the additive group V5 of five-dimensional
vectors with coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /2 9 Z ; b) 

Z /1 6 Z . Compare the number of elements in this group with ф (29) and ф (16) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z / 29 Z)* / < 12 >; b) (Z/16Z)* /  < 7 > .
5. Does the group (Z / 16Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S 9?
Variant 7.

1. Write down all elements of the subgroup generated by vectors 
a (11001), 6(10110), с (01111) in the additive group V5 of five-dimensional 
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vectors with coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /1 7 Z ; b) 

Z /2 6 Z . Compare the number of elements in this group with ф (17) and ф (26) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /17Z)* / < 2 >; b) (Z /26Z )*  / < 7 > .
5. Does the group (Z /2 6 Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9?

Variant 8.
1. Write down all elements of the subgroup generated by vectors 

a (11000), 3(10110), с (01110) in the additive group V5 of five-dimensional

vectors with coordinates from Z /2Z .
2. Write down the coset table of the given subgroup in V5.
3. List all elements of the multiplicative group of the ring: a) Z /2 3 Z ; b) 

Z  / 2 4 Z . Compare the number of elements in this group with ф (23) and ф (24) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z / 23Z)* / < 2 >; b) (Z /24Z )*  / < 17 > .
5.Does the group (Z / 24Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group Sg1?

Variant 9.
1. Write down all elements of the subgroup generated by vectors 

a  (11001), 3(10110), с (01 111) in the additive group V5 of five-dimensional

vectors with coordinates from Z / 2Z.
2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /2 3 Z ; b) 

Z /2 1 Z . Compare the number of elements in this group with ф (23) and ф (21) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /23Z)* / < 3  >; b) (Z /21Z)* / < 11 > .
5. Does the group (Z / 21Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9 ?

35



Variant 10.
1. Write down all elements of the subgroup generated by vectors 

£(10110), с (01111) in the additive group V5 of five-dimensional vectors with
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /3 1 Z ; b) 

Z /2 0 Z . Compare the number of elements in this group with cp(31) and ф (20) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z/31Z)* / < 2 >; b) (Z /2 0 Z )* / < 17 > .
5. Does the group (Z / 20Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9?

Variant 11.
1. Write down all elements of the subgroup generated by vectors 

a (11001), b (10110) in the additive group V5 of five-dimensional vectors with 

coordinates from Z /2Z.
2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /1 4 Z ; b) 

Z /3 7 Z . Compare the number of elements in this group with ф (14) and ф(37) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z/14Z)* / < 11 >; b) (Z /37Z)* /  < 3 > .
5. Does the group (Z / 14Z) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation f  from Problem 2, laboratory 

Study № 3, is normal in the group £ 9?

Variant 12.
1. Write down all elements of the subgroup generated by vectors 

or (11001), с (01111) in the additive group V5 of five-dimensional vectors with

coordinates from Z /2Z.
2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: a) Z /T 7Z ; b) 

Z /2 5 Z . Compare the number of elements in this group with ф (17) and ф (25) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /17Z )* / < 10 >; b) (Z /25Z)* < 7 > .

36



5.Does the group (Z /2 5 Z ) * contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S 9?

Variant 13.
1. Make sure that vectors 0 (00000 ), a (00110 ), 6 (01001), с (01111) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z /2Z.

2. Write down the coset table of the given subgroup in V5.
3. List all elements of the multiplicative group of the ring: a) (Z/17Z)*; b) 

(Z/27Z)*. Compare the number of elements in this group with cp(17) and cp(27) 
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z/17Z)* / < 10 > ; b) (Z/27Z)* / < 10 >.
5.Does the group (Z / 27Z)* contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9?

_ Variant 14.
1. Make sure that vectors 0(00000), a(l 1100), 6(00111), c(l 1011) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z /2Z.

2. Write down the coset table of the given subgroup in V5.
3.List all elements of the multiplicative group of the ring: 

a) (Z/13Z)*; b) (Z /22Z )* . Compare the number of elements in this group with 
cp(13) and cp(22) correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :
a) (Z /13Z)*/<10>; b) (.Z /2 2 Z )* /< 7 > .
5. Does the group (Z / 22Z)* contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group Sg1?

Variant 15.
1. Make sure that vectors 0(00000), a(00111), 6(01001), c(01110) form a 

subgroup under addition in the group V5 of all five-dimensional vectors with 
coordinates from Z  / 2 Z .

2. Write down the coset table of the given subgroup in V5.
3. List all elements of the multiplicative group of the ring:

a) (Z/15Z)*; b) (Z /29Z )*. Compare the number of elements in this group with
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ф(15) and ф(29) correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :
a) (Z/15Z)* / < 7 >; b) (Z /29Z)* / < 10 > .
5. Does the group (Z/15Z)* contain a non-cyclic subgroup?
6. Is the subgroup < /  > for the permutation /  from Problem 2, laboratory 

Study № 3, is normal in the group S9?

Laboratory Study № 5 «Historical Cryptography»

Necessary Theoretical Data

The history of civilization shows that almost immediately after beginning of 
written languages various sorts of systems for protection information against 
unauthorized access were developed. Consider the most popular ones.

1. Caesar cipher (Caeser’s cipher, Caesar’s code, Caesar’s shift). Its essence 
is that every plaintext letter (i.e., each letter in the encrypted message) is replaced by 
a letter some fixed number of positions further in the alphabet. This cipher was used 
by Julius Caesar in his business correspondence in the first century AD. Caesar 
replaced the first letter of the Latin alphabet (A ) with the fourth (D), the second 
(B) -  with the fifth (£ ), and the last one -  with the third. In other words, the 
replacement was performed in accordance with the following table (see Figure 5.1):

A В С D E F G H I J К L M N 0 P Q R s T и V W X Y Z
D E F G H I J К L M N 0 P Q R S T U V w X Y z A В С

Figure. 5.1

Example 5.1. The famous Caeser’s report to the Roman Senate describing his 
recent victory looked as follows:

YHQL YLGLYLFL 
With fairly serious efforts to decrypt we can verify that the correct text is "Yeni. 

vidi, vici” that means “I came, I saw, I conquered”.
The Caesar cipher is referred to a class of ciphers called “simple substimiion 

ciphers” or “substitution ciphers”. These are ciphers in which every letter of the 
alphabet is replaced by a letter, number, symbol or any their combination.

2. Trithemius cipher. This encryption system was first published in 1518 in a 
treatise, written by religious abbot Trithemius (1462 - 1516). The Trithemius system 
represents a further improvement of the Caesar encryption system and is based on the 
idea of a motto. In this system the text of a motto (nowadays it is known as "key") is 
signed with reiteration under an encrypted text, then columnwise summation of the 
text and the motto letters is carried out. The obtained result is a ciphertext.

Example 5.2. Let encrypt the text «The s k y  is blue above Paris» with the motto 
«Rose». As stated above, we need to write down two lines -  a line of the text and a
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string with the motto with reiteration. At the top and at the bottom we add a row with 
numbers of corresponding letters in the English alphabet. As a result we obtain the 
following table (see Figure. 5.3).

20 8 5 19 11 25 9 19 2 12 21 5 1 2 15 22 5 16 1 18 9 19
T H  E S  К Y I  S B L U A A B O V E P A R I S  
R I  S E R I  S E R 1 S E R I  S E R I  S E R О
18 15 19 5 18 15 19 5 18 15 19 5 18 15 19 5 18 15 19 5 18 15

Figure. 5.3
To obtain a ciphertext we sum numbers in each column of the table. If the sum 

is greater than 26 we subtract 26 from this sum. After these calculations we convert 
the derived number to a letter. So in the first column we get a number 
20 + 1 8 -2 6  = 12, i.e., the letter «L». We continue this procedure until we get the 
following ciphertext:
L W  X X N N B X T  A N  J S Q H  A W  E T W A H

A french ambassador to Rome, Blaise de Vigenere (1523 - 1596), according to 
his service dealt with the problem of mail secrecy, wrote a large “Treatise on ciphers" 
(published in 1585). He made a practical improvement in the Trithemius 
cryptosystem that allowed to carry out the procedure of encryption - decryption 
almost automatically. In this system the role of the cipher machine is played by a 
square table with the alphabet. Its first line is filled with successive letters of the 
alphabet. The second line is the same alphabet, but shifted by one letter left -  in this 
case it starts with the letter В and ends with the letter A. The third line starts with the 
letter С and ends with the letter B. And so on, up to 26 lines, inclusive. Now we 
revert to Example 5.2. At the intersection of the column with the first letter T and the 
row with the first letter R is the letter L -  the first letter of the ciphertext. And so on.

In such form cryptosystems with mottoes were used for about 400 years as 
absolutely reliable and undecryptable, espessially in military affairs. The fact that the 
Trithemius system was successfully applied in the early twentieth century, 
is confirmed, in particular, by certain pages of the immortal book "The Good Soldier 
Svejk" by Jaroslav Hasek.

Practice of long usage of a cryptographic system pointed to the problem of 
keys. Usage of the same key over a long period of time can bring enemy to some 
regularity and subsequently cracking the cryptosystem. This problem has been 
overcome in two ways. The idea to use long keys came first. Ideally the key length 
coincides with the length of an encrypted text. Then, of course, the idea to change 
keys frequently appeared. Frequent key changes arise problems how to generate and 
to transfer a new key. The found solution was unexpected and brilliantly simple -  a 
book. Participants use identical copies of the same edition of a particular book. The 
new key is reported by means of calling a page and a paragraph of the book. It is 
unlikely that two numbers sent by mail or published in the advertising section of a 
newspaper can give enemy meaningful information.
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A В С D E F G H I J К L M N О P Q R s T U V W X Y z
В С D E F G H I J К L M N 0 P Q R S T U V w X Y Z A
С D E F G H I J К L M N О Р Q R S T и V w X Y Z A В
D E F G H I J К L M N 0 p Q R S T u V W X Y Z A В С
E F G H I J К L M N О P Q R S T и V w X Y Z A В С D
F G H I J К L M N 0 P Q R S T и V w X Y z A В С D E
G H I J К L M N О P Q R S T и V w X Y Z A В С D E F
H I J К L M N О P Q R S T u V w X Y Z A В С D E F G
I J К L M N 0 P Q R S T U V w X Y Z A В С D E F G H
J К L M N 0 P Q R S T и V w X Y Z A В С D E F G H I
К L M N 0 P Q R S T и V W X Y Z A В С D E F G H I J
L M N О P Q R S T и V w X Y Z A В С D E F G H I J К
M N 0 P Q R S T u V w X Y z A В С D E F G H I J К L
N 0 P Q R S T и V w X Y z A В С D E F G H I J К L M
0 P Q R S T и V w X Y Z A В С D E F G H I J К L M N
P Q R S T и V w X Y Z A В С D E F G H I J К L M N О

Q R S T и V w X Y z A В С D E F G H I J К L M N 0 P
R S T и V w X Y Z A В С D E F G H I J К L M N 0 P Q
S T U V w X Y Z A В С D E F G H I J К L M N 0 P Q R
T и V w X Y z A В С D E F G H I J К L M N 0 P Q R S
и V w X Y Z A В С D E F G H I J К L M N О P Q R S T
V w X Y z A В С D E F G H I J К L M N 0 P Q R S T и
w X Y Z A В С D E F G H I J К L M N 0 P Q R S T U V
X Y Z A В С D E F G H I J К L M N О P Q R S T U V w
Y Z A В С D E F G H I J К L M N О P Q R S T u V w X
Z A В С D E F G H I J К L M N 0 P Q R S T U V w X Y

3. Route cipher. There is a group of ciphers called “transposition ciphers”. In 
these ciphers positions held by units of plaintext (which are commonly characters or 
groups of characters) are shifted according to a regular system. A “route cipher” is an 
example of a transposition cipher. An encrypted message is typed in the rows of a 
given \n x m] rectangular. A ciphertext is found if we write columns of the table.

The next example demonstrates a “router cipher”.
Example 5.3. The text consisting of 30 letters is typed in the rows of a 5 x 6  

matrix or table (Figure. 5.4):
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w E W E R E
D I s С О V
E R E D F L
E E A W A Y
A T О N С E

Figure. 5.4
To obtain a ciphertext it is necessary to write down matrix columns in a string 

starting with the first one:
WDEEA EIRET WSEAO ECDWNROFAC EVLYE

Surely, there are other possible ways to type a message in a given table and to 
write down columns of the table.

We can increase complexity of encryptions discussed above if we use a motto. 
Namely, have written a message in the table we can rearrange columns of the table in 
some way.

Example 5.4. Let complicate the encrypted message from Example 5.3 by 
applying the motto “Matrix”. According to the order of the motto’s letters in the 
English alphabet we can assign the following numbers to them: 3,1,5,4,2,6. We write 
down the columns of the table from Example 5.3 in this order:

EIRET ROFAC WDEEA ECDWN WSEAO EVLYE
4. Cardan grille. Perhaps the most complicated variant of “router transposition” 

is a Cardano grill. Gerolamo Cardano (1501 -  1576) is a famous Italian 
mathematician, physician, mechanic, philosopher. As a mathematician he is 
renowned for being found formulas for roots of cubic equations. And as a mechanic 
he became famous primarily for the fact that his ideas are implemented in each car 
device called “cardan shaft” or “drive shaft”. Finally, Cardano scored in 
cryptography.

Gerolamo Cardano invented the following encryption method. To send a secret 
message containing 4mk letters one make a square paper stencil containing 2m x 2k 
squares. In the stencil one cut out mk squares so that when the stencil is applied to a 
blank sheet of paper in four possible ways its cuts completely cover the entire area of 
the sheet. The order of these four possible positions are determined in advance. 
Letters of a message are sequentially typed in the cuts of a stencil -  the most natural 
variant -  by rows, each row from left to right. The filled table is written sequentially 
-  each column in a line (Figure. 5.6).

-----------► -----------►

:-y;
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1

'Л
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Example 5.7. Read the message encrypted with the stencil and the procedure 
described above:

EGSC IINS RINB LASO

Problems for Classroom 
Problem 5.1. Read the text encrypted by the Caesar cipher:
a) Pb prwkhu kdv d yhub qlfh fdu;
b) Uhdg wkh whaw hqfubswhg eb wkh Fdhvdu flskhu.
Problem 5.2. Decrypt the ciphertext created with the Vigenere table:
a) ehx pw ietzkns a zyiqn v it ;
b) pog'a hdigs cnp dkpzq am bje eafl xuxm.
Problem 5.3. Decrypt the message encrypted by a route cipher method:
a) ivyls micoe dnanv rgree imaar;
b) gkary antyg uehvo swveo smerd.
Problem 5.4. Decrypt the message encrypted with the Cardano grille: 
wloteseea seielaifh hlasecces tomhoflsd

X

X

X X X

X X

X X

Self Instructional Problems for Laboratory Study № 5 «Historical
Cryptography»

1. Read the text encrypted by the Caesar cipher.
2. Decrypt the message encrypted by a route cipher method.
3. Decrypt the message with the motto “mathematical
4. Decrypt the message encrypted with a Cardano grille.

Variant 1.
1. Grulv orrnhg durxqg wkh ehgurrp iru wkh odvw wlph wr pdnh fhuwdlq 

wkdw wkh sohdvdqw urrp, jurzq ghdu ryhu wkh sdvw wkluwb bhduv, zdv qhdw dqg 
wlgb

2. Hdhli eaelt slsfe olmrr ltaus
3. po rvy mgkmg od dbzesrxm?
4. wakyremt ycwfinye plotmsvir eheihydew
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X X

X X

X X

X

X X

Variant 2.
1. WKhu vnlq udq wkh jdpxw iurp d wudqvoxfhqw zklwh wr d ghhs urvh, 

ghshqglqj rq zkhwkhu vkh zdv dqjub, wluhg, ru haflwhg
2. Lyonr onmdo veena ewsed lhaws
3. ut bz e tizta ezttyxmigqpg detk
4. mlnieetks lielkosnd sadrlktce chltaseaa

X X

X X X

X X

X X

Variant 3.
1. Zlwk wkh dgyhqw ri frpsxwhuv, wkh vlwxdwlrq kdg fkdqjhg gudpdwlfdoob, 

dqg hqruprxv dprxqwv ri prqhb frxog eh wudqvihuuhg lqvwdqwdqhrxvob
2. Asnpc ptwph erari dison eaaag
3. ut bz aqle eqrfh lliunz
4. httasyydi teroderan weeyvfsnd ehwarotwy

X

X X

X X

X

X

X X

Variant 4.
1. Dv vkh vhw wkh vfrufkhg phdw dqg ehdqv lq iurqw ri kip, vkh irujrw khu 

fduhixoob uhkhduvhg vshhfk
2. sroto oeohr rrdew csida etnoy
3. ut bz aqle eqrfh lliunz
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4. seoipasse msrkolyoa ytenttptm idsolergs

X

X X

X

X X

X

X X

1. Uhjxodu fxvwrphuv zhuh lwxhg ghsrvlw volsv zlwk d shuvrqdo pdjqhwlchg 
frgh dw wkh erwwrp

2. iteic lomty iryec kiwbl edhie
3. ihr hvq wx lqizg mome?
4. uheueitiy hheosrdee eseabntnm toscntcbm

X

X

X

X

X X X X

X

Variant 7.
1. Lq wkh rog prylhv wkh exwohu dozdbv fdph wr wkh uhvfxh zlwk d wudb ri 

gulqnv.

2. tyime hssoc ittsu sehtr smese
3. yy zyeznr'a paye bz oxompklpa
4.smbanoegh oohinlwhs ytahwimef edskestil

X X X

X

X

X x
X X

Variant 8.
1. Wkhuhduhpdqblqwhuhvwlqjdqgqreohsurihvvlrqv
2. saiih hlkso elenu ryses elhwe
3. u lbzxqn mw пару zhkm eomtypar
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4. ermnteeou teeheects reiaarida hxsvbnrft

X

X X X

X

X

X X

X

1. LzdqwwrvdbwkdwLfdqqrwlpdjlqhpbolihzlwkrxwwudyhoolqj
2. dowai ouwsn nkhve tnoir yowge
3. sanzw ial otemt fhxtefivioitu
4. eaaeealae ssdalnsto wxuthfeep ahehshdio

X X

X

X X

X

X X

X

Variant 10.
1. Brxwklvdyhublpsruwdqwshulrglqwkholihripdq
2. leleh issse tntas taatk lirty
3. pog'a hdigs cnp dkpzq!
4. tnyopiurt epeoducoy sdtmahess hoorsteda

X

X X

X X

X X X

X

Variant 11.
1. WkhfdslwdoriwkhXVDlvwkhflwbriZdvklqjwrq
2. from now you are the chosen one
3. u dhu'x wnhe yha il cmsegmte!
4.eseooohlw amtrbpyiw hxmwteano hanaruisg
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X X

X

X X X

X

X

X

Variant 12
1. Lzrxogolnhwrwhoobrxderxwvkrsslqj
2. histe otiot wpbhh iolaa ssevt
3. u wtz junxl hod silipigo
4. satousose hyodoapsi idmssbsbl itatitoao

X X

X X

X

X X

X X

Variant 13
1. QhzBmnQhzBrundwwudfwshrsohiurpdooryhu
2. foaee rwrcn oyeho moton nuhse
3. u lbzxqn mw пару zhkm eomtypar
4. aiammaltf heaedoonn ncrbjueoc vneeryrae

X

X X

X X X

X

X

X

Variant 14.
1. WkhHqjolvkshrsoholnhdqlpdovyhubpxfk
2. hvass eechd ymkou gemrd ibyte
3. ihta ede rww daign mz blckr?
4. berttwrwu yagdseito morbueagh aeyuihiey
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X

X X

X

X X

X X

X

Variant 15.
1. Pdqbuholjlrqvhalvwrqrxusodqhw
2. ohert bereu epoal yofth twgku
3. ehx pw ietzkns a zyiqn aiv
4. iensuyair lkwmasdns ieiianyum whtendnme

X X

X

X

X

X X X

X

Laboratory Study № 6 «Modern Cryptosystems»

Necessary Theoretical Data

Modem cryptography has the exact date of birth -  1976 when W. Diffie and M. 
Heilman published their article with the new fundamental revolutionary ideas. 
According to one of these ideas a good cryptosystem should be based on a one-way 
function. The characteristic feature of a one-way one-one function is that values of 
this function can be calculated easily but values of the inverse function is practically 
not computable without knowledge of additional information -  keys. They suggested 
a candidate for the role of a one-way function -  a function of two prime arguments 
f  {p, q) = p -q  for large p  and q. Soon, in 1977, U.S. researchers R. Rivest, A. 
Shamir, and L. Adleman suggested a system of data encryption based on a one-way 
function. The proposed encryption system now is called the RSA cryptosystem.

1. RSA cryptosystem. The essence of the RSA cryptosystem is simple. First of 
all encrypted information is converted into digital format. For example, in the origin 
letters of the Latin alphabet were replaced by two-digits numbers: "a" = 01, «Ь» = 02, 
..., etc. In any case, transmitted information is a natural number c. Then one choose 
two large prime numbers p  and q, such that they do not divide с and n = p  ■ q > c. It 
is obvious that ср(п) = (p - \ ) ^ q - \) .  At last one should choose a natural number e
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such that 0 < e< n  and GCD (e,(p(ri)) = 1.
The encrypted message (or ciphertext) is the number m = ce(mo&ri). The pair 

of natural numbers (e, n) is the public key of the RSA cryptosystem.
Example 6.1. Let p  = 3, <7 = 11. Then n = p q  = 33, ф(и) = 2-10 = 20. Let 

take e = 7. It is easy to see that then d  = 3. Let «S» = 19 be a message to transmit. 
Then the ciphertext is the number m = ce(modri) = 197(mod33). This value we 

compute in several steps. 192 = 361 = 31(mod33).

194 =312(mod33) = 961 =4(mod33). Then 197 = 4 -3 1 -19(mod33) = 13(mod33). 
Thus m = 13. An addressee is sent the message (m , e, n) = (13, 7, 33).

The addressee receives the message (n,e,m). He like everybody knows n and 
e . He also need to know the secret key -  such natural d  < n  that 
e ■ d  = 1 (mod (ф («))). Hence e ■ d  = ф (n) ■ k + 1 for some integer k. Then by
Euler’s Theorem md = ced = c- (сеУ(к) = c-\ = c (mod«). Thus in order to find с it is 
enough to find the remainder of m'' upon division by n .

It is possible to crack the RSA cryptotext only when solution d  of the 
congruence ex = 1 (mod<p(n)) is found. To do this an attacker need to know ф(«). 
The properties of the function ф (n) implies that the only reliable way to calculate 
(p{ri) is to factor n. But the problem of factorization is very labor-consuming. It is a 
base for the security of the RSA cryptosystem.

Example 6.2. Decrypt the RSA cryptotext (m , e, n) = (13, 7, 33).
Solution. Here d  = 3. Therefore the decryption of the message is done by the

rule:
c = md(mod n) = 133(mod 33) = 132 • 13(mod 33) s  4 • 13(mod 33) = 52(mod 33) = 19. 
The true message is defined completely and correctly.

2. Chinese Remainder Theorem (CRT). The Chinese Remainder Theorem 
(CRT) is formulated in the following way.

Theorem 6.1. Let m = mx ■ m, ■ ...• mn be the decomposition o f a natural number 
m into a product o f painvise coprime factors. Let bl,b2,...,bn be arbitrary fixed

x  = bx (mod m{),
integers. Then the system o f congruences < .......... always has a solution

x  = bn (mod mn) 
and all solutions o f this system are congruent modulo m.

Definition 6.1. In the conditions of Theorem 6.1 every integer x  has n 
remainders 6;- upon division by every divisor of m. A set {bx, b2, b n) is 
called a CRT representation of x modulo m.

The CRT-theorem states that there are infinitely many integers x with the same set 
(bx, b2, ..., bn) of remainders upon division by integers m But all of them are 
congruent modulo m, i.e., the distance between them is a multiple of m :
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х = х + mq for a suitable integer q. In particular it implies that the ring Z / mZ 
contains a unique number x  with a given set (bx, b2,..., bn) . Thus, there is

Corollary 1. The CRT-theorem establishes one-to-one correspondence between 
the integers on the interval from zero up to m — 1 inclusive and all possible sets of 
numbers (bu b2, ..., bn) for integer bt on the interval from zero up to mi -1  
inclusive: x <-» (Ъъ b2, ...,b n).

From the properties of relatively prime numbers and corollary 1 we obtain
Corollary 2. Under the conditions of Corollary 1 a class 5c is invertible in the 

ring Z lm Z  iff every coordinate bt from the set (bx, b2, ...,b n) corresponding to x 
generates an invertible class in Z / nijZ.

The correspondence assigned by Corollary 1 preserves arithmetic operations on 
numbers due to the properties of congruences.

Corollary 3. If x <-> (by, b2,..., bn), у  (cp c2, c n) then 
(x ±  jy)mod m <-» ((by ± c 1)mod mx, (b2 ± c 2)mod (bn ± c„)m od  mn);
(x -y )m o d m  -c{)w sAm i, (b2 •c2)m odw 2, ... ,(bn -c„)m odm „);

(x • y ~x) mcxi m <-> ((Z?j • q -1) mod mx, (b2 • c2 X) mod m2,..., (bn • c~xn) mod mn) 
for an invertible element у  e  Z / mZ.

Further the set of all invertible classes g in the ring Z / mZ we will denote by 
Zlm Z*  or U(m). From Euler’s Theorem g ^ tn) = \ for every geU(m ) and 
Corollary 2 we obtain

Corollary 4. Let x be the least common multiple of numbers cp (rti!), 
cp(m2) , ..., ф ( » 0  for щ,т2,...,тп from Theorem 6.1. Then the equality g T =1 holds 
for every element g g U(m) .

According to Corollary 3 of Theorem 6.1 arithmetic operations modulo m on 
numbers can be replaced by the same operations but on their CRT representations. 
At first glance such transition seems to be cumbersome. But it brings significant gain 
in number of operations for numbers which are clearly beyond capacity used in 
computers now. For example, if m is factorized into a product of two coprime factors 
then multiplication of their CRT representations gives approximately a twofold gain 
in number of operations and hence a twofold gain in time.

Even greater gain (three-fold and even fourfold) is obtained when numbers are 
raised to a power. Corollary 4 of Theorem 6.1 is applied to solve such problems.

Example 6.3. Let find 2317(mod35).
Solution. Traditional method
232 = 529 = 35 • 15 + 4 = 4(mod 35);

23 4 = 16(mod35);

238 = 256(mod 35) = (35 ■ 7 +1 l)(mod 35) e= 1 l(mod 35);

2316 = 121(mod35) ее 16(mod35).
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Then 2317 = 2316 -23 = 16 • 23(mod 35) = 18(mod 35).
Let try to solve the same problem through CRT representation. Since 35 = 5-7  

and 23 = 3(mod 5); 23 = 2(mod 7), then the CRT representation of 23 is the pair 
(3, 2). Here ф (5) = 4, ф (7) = 6. Therefore the least common multiple is r = 12. 
Consequently

317 = 35 (mod 5) = 3(mod 5); 217 = 25 (mod 7) = 4(mod 7).
17Thus, the CRT representation of 23 (mod 35) is the pair which obviously 

represents the number 18.
If n = 2; m, = p  and m2=q are prime numbers then to recover an element 

x e Z /m Z  by its CRT representation x  <-» (a , b) the following Gamer’s formulae

are used: x = ( ((b -a )(p ~ l m o d q))m odq)p  + a  or

x = (((a -  b){q~l mod p )) mod p )q  + b.
Example 6.4. For the number 19 the pair (8,6) is the CRT representation 

modulo 143=11-13. Hence 19 is a solution of the system of congruences 
(x = 8(modl 1);

We try to restore it by Garner’s formulae.
|x  = 6(modl3).

Solution. Compute 13_1(m odll) and 11-1 (mod 13). Clearly, 13(modll) = 2;

2 -6  = 12 = (mod 11), therefore 13-1(mod 11) = 6. We find l l _1(modl3) by the 
extended Euclidian algorithm for GCD(11,13) = 1: 13 = 11-1 + 2; 1 1 = 2 -5  + 1. 
From here by down-sweep step we obtain the equality

1 = 11-1 + 2- (-5) = 11-1 +(13-1 + 11- (-l))(-5 ) = 13 • (-5) + 11-6.
Hence l l _1(modl3) = 6. By the first Gamer’s formula we have 

x = ((6 -8 )6  mod 13)11 + 8 = (-12(mod 13))11 + 8 = 11 + 8 = 19. By the second 
Gamer’s formula we obtain x = ((8 -  6) 6modi 1) 13 + 6 = 13 + 6 = 19.

Surely if one works with the real RSA cryptosystems, then the actual 
calculations are done by the Chinese Remainder Theorem.

3. Rabin cryptosystem. This cryptosystem was the result of rethinking of the 
RSA cryptosystem. M.Rabin became interested in the problem of key choice in the 
RSA cryptosystem where e is always coprime with ф (n) and in particular is always 
odd. And what happens if we take an even e l  And if we take the simplest case 
e = 2? As a result of detailed examination unexpectedly appeared the Rabin 
cryptosystem considered here.

Let p  and q be two distinct prime numbers and N  = pq. We fix a number
В, 0 < В < N. The pair {N, В } is the public key of the Rabin cryptosystem. A 
transmitted message с is considered as an element of the ring Z / NZ  and is 
encrypted by the formula: m = c(c + 5)(mod7V). Clearly this encryption method is 
implemented much faster than in the RSA cryptosystem. So, the Rabin cryptotext 
represents three numbers (N, B, m), where the latter is the ciphertext and the first two
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are public keys. In fact, the message с is one of the roots of the quadratic equation 
x2 + B x -m  = 0 in the ring Z / NZ. In this ring 2 is an invertible element. Therefore we

can use the standard formula x = ' I F —  в л-----h m ----
ll 4 2

(modjV) to solve the quadratic

equation.
The major disadvantage of the Rabin cryptosystem is that there are four roots of 

every square in the ring Z / NZ.
Example 6.5. Suppose N  = 3 • 7 = 21. Let take В = 5 and let the letter 5 = 19 be 

the transmitted information. The ciphertext is
m = c(c + B)(mo&N) = 19(19 + 5)(mod21) = 15. An addressee is sent three numbers 
(N, B, rri) = (21,5,15).

The addressee computes the discriminant of the quadratic equation: 
R2D = -----bm = 25/4 + 15 = (25-16 + 15)(mod21) = 16. This discriminant has the
4

following CRT representation modulo 21: 16 <->(1,2). In Z /3 Z  there are two 
square roots of 1: 1 and 2. In Z /7 Z  there are also two square roots of 2: 3 and 4. 
Therefore in Z /21Z  square roots of 16 have 4 different CRT representations: (1, 3); 
(1, 4); (2, 3); (2, 4). It means that in Z /21Z  there are 4 different roots of 16. Let find
them by the first Gamer’s formula. 3_1 (mod 7) = 5. Therefore

d x = ( (3 - l )5 )m o d  7)3 + 1 = 10; d 2 = ((4 -1 )5 ) mod 7)3 +1 = 4; 
d3 = ( (3 -2 )5 )m o d 7 )3  + 2 = 17; d 4 = ( ( 4 - 2 )5 )  mod 7)3 + 2 = 11.
In Z  /  21Z" 2_1 =11. Therefore in Z /2 1 Z  the quadratic equation has 4 

roots: x x = 4 -  5-11 = 12 (mod 21); x 2 = 10 — 55 = 18(mod 21);
x3 =11 — 55 = 19(mod 21); x 4 = 17 -  55 = 4(mod 21). The authors of the problem 
know which answer is correct, but how to inform the addressee about it is an 
additional problem for the sender.

4. ElGamal cryptosystem appeared as a reaction on excessive complexity of 
the RSA cryptosystem. Its security is based on the other problem -  the problem of
discrete logarithm: to solve the equation a x =b  in the ring Z / p Z  with prime p
one need to look sequentially through degrees a until the desired residue class b is 
obtained. The problem is to develop the other not enumerative method to determine 
the degree of x in this equation.

The base of the ElGamal cryptosystem is a large prime number P. For real, not 
academic cryptosystems it should contain from 150 to 300 decimal digits. It means
that P  lies in the range from 2512 to 2 1024. It is known that the residue class ring 
Z I  PZ  is a field because all its nonzero residue classes are invertible under
multiplication. Moreover it is known that the multiplicative group Z I  PZ* of this 
field has order P - 1 and is cyclic. It is also assumed that there is another large prime 
number Q * 2i60 among divisors of P - 1. Let g  be a generator of this multiplicative 
group. It is not very easy to find this generator. But this search is a preliminary task.
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Developers of the cryptosystem face this problem during cryptosystem’s 
construction. The parameters P and g  are public keys of the system.

Any natural number x can be a secret key of the cryptosystem. It is known to 
both a sender and an addressee. The value h = g' (mod P) is the third public key of 
the cryptosystem. Any natural number с interpreted as a nonzero element of the field 
Z !  PZ  is an informational message in this cryptosystem. To send a message с or 
multiple messages during short period of time the sender generates a session key k. 
The addressee does not know it. To encrypt a message с one need to multip>. it by 
K  = hk(modP) in the field Z / P Z . Thus the encrypted message is m-cK< m oc?i. 
The addressee is send a message of two numbers (m, Osk), where Osk = g  (mod/31 is 
a public session key.

The addressee knows three public keys (P, g, h ) . He also knows the secret key

x. The addressee computes the value (3^(mod P). Note, that

Oxsk (mod P ) - g kx (mod P) = h k (mod P) = K.  It remains to find K ~ l in the field 
Z / PZ. This is the same problem as finding d  in the RSA cryptosystem. After this 
the addressee can find the true message by the formula: с = m- K  ' (mod/3).

Example 6.6. Let P  = 23. Direct verification shows that g = 5 can be taken as a 
generator in Z / 23Z*. Let x = 7. Then

h = 5?(mod 23) = 52 • 52 • 52 • 5(mod 23) = 2 • 2 • 2 • 5(mod23) =

= 40 (mod 23) = 17 (mod 23).
So, h = 17. Let take к = 3. Then

K = hk (mod P) = 173 (mod 23) = 14 (mod 23).

Osk ~ g k (mod P) = 5J (mod 23) = 10(mod 23). Let с = 20 be a message to encrypt 
Then w = c^(m odi5) = 20-14(mod23) = 4(mod23). A couple of numbers 
(m,Osk) = (4,10) is sent to an addressee. The values (P, g , h, x) = (23, 5,1". 7) 
should be known to him in advance. The addressee computes 
К  = 0*k (mod P) = 107(mod 23) = 14. It is easy to see that AT-1 (mod 23) = 5. Then 
c -m  K~1 (modP) = 4-5 (mod23) = 20 -  the letter «t».

Problems for Classroom
Problem 6.1. Use RSA to encrypt the message с = 156.
Solution. Choose n = 209 = 11 • 19, p  = 11, q = 19 such that 156<20"? ar.c 

GCD(156, 209) = 1. Here cp(209) = <p(ll)• cp(19) = 10• 18 = 180. Choose г = " 
such that GCD(7,180) = 1. Then the ciphertext is m = ce = 156 ( m odi']c

е = 7ю =1112 = 2 2 + 2 + 1 = 4 + 2 + 1; 1567 =1564 -156: -156 < :ixxi209); 

1562 =24336 =92 (mod209); 1564 = 9 2 2 =8464 =104 (m od209):

1567 =156-92-104 = 1492608 =139 (mod 209).
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The pair (7, 209) is the public key. The message to send is (n,e,m) = (209,7,139).
Problem 6.2. Use the Chinese Remainder Theorem to calculate 

139103 (mod 209).
Solution. It is easy to see that 139 <-> (7, 6) modulo 209 = 11 • 19. By Fermat’s 

Little Theorem we have
710 = 1 (mod 11); 618 = 1 (mod 19).

Therefore 7103 = 73(m od \ \ )  = 2 (mod 11). 6103 = 613(mod 19) s  4 (mod 19).

Thus, 13910j <-> (2, 4). 11-1 (mod 19) = 7. By Garner’s formula we obtain

139103 (mod 209) = ((4 -  2)7 mod 19)11 + 2 = 156.
Problem 6.3. Decrypt the RSA cryptotext (n,e,m ) = (209, 7,139).
Solution. 1) we factor n = 209 : 209 = p -q  = 1119;
2) we compute cp (209) — {p — 1 ){q — 1) = 10 • 18 = 180;
3) we find the secret key d  by the extended Euclidian algorithm:

180 = 25-7  + 5; 7 = 1-5 + 2; 5 = 2 -2  + l.
Therefore

1 = 5 + (-2) -2 = 5 + (-2 ) • (7 -1  • 5) = 5 + (-2) • 7 + 2 • 5 = (-2) • 7 + 3 • 5 =
= ( -2 )-7  + 3(180 -  25-7) = 3-180+ ( -7 7 )-7 .

Hence e~l = — 77 = 180 — 77 = 103. Thus, d  -  103 ;
1

4) we find m (mod/?) = c, i.e., 139 J (mod 209). From the solution of problem 
6.2 it follows: the sent message is с = 156.

Problem 6.4. Use RSA and the Chinese Remainder Theorem to encrypt the 
message «as».

Solution is not unique. Naturally, we perform the transition from the word to a 
number as the authors of RSA did: a<-> 01, s<-^19. Therefore as <->119. So the 
message is c = 119. We choose prime numbers p  and q so that their product 
n = p q  is greater than с -119 and is coprime to it. Let take p  = 13 and <7 = 19. Then 
n - p q - 2 4 1  satisfies the required conditions. Let take e = A\. It is necessary to 
calculate m = ce mod(«) = 11941(mod247). We find the CRT-representation 
c = 119<->(2,5). (p{n) = 12-18 = 216. LCM(12,18)=36. Hence by Corollary 4 for 
every a e  (Z/247Z)* we have a 36 = 1. Therefore 11941 = 11936+5 = 1195(m od247). 
Let find the fifth degrees of the CRT representation of с .

25 s= 6(modl3).
5s = 25 • 25 • 5 = 6 • 6 • 5(modl9) = 36 • 5(modl9) = 17 • 5(modl9) = 9(modl9). 

Thus, (6,9). To restore m we use the following Garner’s formulae:
m -  (((& -  a)(p~x mod<7))modg)p + a. Here p~l mod# = 13-1 modl9 = 3modl9 = 3. 
Then m -  (((9 -  6)3)modl9)13 + 6 = (9modl9)13 + 6 = 9-13 + 2 = 123. So, by the 
RSA scheme we have the message (n,e,m) = (247,41,123).
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Problem 6.5. Decrypt the message (n,e,m) = (247,41,123) using the Chinese
Remainder Theorem.

Solution. The basis of strength of the RSA cryptosystem (the complexity of 
factorization) for « = 247 can be easily overcome: 247 = 13-19. Then 
<£>(247) = 12-18 = 2 1 6 = 23 - 33 and GCD(cp(13),<£>(19)) = 6. It is necessary to find
d  = e~x = 4 Г 1 in the ring Z /216Z . <^(216) = < (̂23)-<p(33) = 4-18 = 72 and 
LCM(^?(23),<^(33)) = 36. Hence for every <3e(Z/216Z)‘ we have a j6 = 1, in 
particular 4136 =1. Therefore in the ring Z/216Z we have 4Г 1 = 4 Г \  Let compute 
this value.

412 =1681 = 169(mod216); 4 14 = 1692 =49(mod216);
418 = 492 s  25(mod216); 4116 = 252 = 193(mod216); 4132 s  1932 = 97(mod216). 

Hence 4 135 = 4132 • 412 • 41 = 97 • 169 • 41(mod216) = 137(mod216). So in the ring 
Z /216Z w ehave 4Г ‘ =137.

To decrypt the message we should calculate c = mrf(mod«) = 123137(mod247).
While solving the previous problem we noted that for every <я e (Z/247Z)* the 
equality a 36 = 1 holds. Therefore 123137 =12333&f29 = 12329(mod247). Let turn to the 
CRT representation: 12329 <-^(б29,929). By the little Fermat’s theorem we have 
612=l(modl3) and 918 =l(m odl9). Therefore
629 = 65 (modi3) = 62 • 62 • 6(modl3) = 10-10-6(modl3) = 2(modl3);
929 =9' ‘(modi 9). Since 92 = 5(modl9), 94 = 52(modl9) = 6(modl9), then 
911 = 94 2+2+1 = 62 • 5 • 9(modl9) = \1 ■ 7(modl9) = 5(modl9).

Thus с <->(2,5). To restore с by its CRT representation we use Garner’s 
formula

с = {{{a -  b)(q~l mod p )) mod p)q  + b .
Here

q~l (mod p) = 19_1(modl3) = 6"1 (modl3) - 1 l(modl3).
Then c = (((2-5)ll)m odl3)19 + 5 = (-33modl3)19 + 5 = 119. Consequently the sent 
message is “as”. The problem is completely solved.

Problem 6.6. Use the Rabin cryptosystem to encrypt the message “be”.
Solution. Standard transition from the word into digital form proposed by R. 

Rivest, A. Shamir, and L. Adleman gives the number с = 205. We choose 
vV = 19-29 = 551, В -  43. Then the encrypted message is

m = c(c + £)(mod7V) = 205(205 + 43)(mod551) = 148.
Problem 6.7. Find all square roots of 237 in the ring Z  / 551Z.
Solution. The number 237 <-> (9,5) modulo 551 = 19 • 29. In the field Z /1 9 Z  

there exist two square roots of 9: 3 and 19-3 = 16. To find square roots of 5 in the 
field Z /2 9 Z  we use the enumerative technique. Namely, we look through elements 
of the set Z /29Z  until we find an element a eZ /2 9 Z  such that a 2 mod29 = 5. It 
is easy to see that 112 mod29 = 5. Therefore there exist two square roots of 5: 11 and
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29 -  11 = 18. Hence in the ring Z /551Z  one can extract four square roots of 237. 
Let denote them by dx, d2, d3, d4. These numbers have the following CRT 
representations: J, = (3,11); d2 = (16,11); d} = (3,18); c/4 = (16,18). We can find the 
roots by the first Gamer’s formula

x = (((b -  a)(p~l mod q ))mod q )p  + a.

In this case p ~ {(m odq) = 19_1(m od29). Let find this value by the extended 
Euclidian algorithm. 29 = 19-1 + 10; 19 = 10-1 + 9; 10 = 9-1 + 1. Hence
1 = 10 + 9- (-1) = 10 + (-1) • (19 +10 • (-1)) = 10 • 2 +19 • (-1) = (29 +19 • (-1)) • 2 +19 • (-1) = 
= 29 • 2 +19 • (-3). From this Bezout’s identity it follows that in the ring
Z /2 9 Z th e  equality 19_1 = 2 9 -3  = 26 holds. Now we can easily obtain the desired 
roots:

dx = ((11 - 3)26(mod29)) • 19 + 3 = 5 • 19 + 3 = 98;
d2 = ((11 -  16)26(mod29)) -19 + 16 = 15-19 + 16 = 301;
d3 = ((1 8 - 3)26(mod29)) -19 + 3 = 15-19 + 3 = 250;
dA = ((18 -  16)26(mod29)) • 19 +16 = 23 • 19 +16 = 453.

Problem 6.8. Decrypt a two-letters message from the Rabin cryptotext: 
(TV, B, rri) = (551,43,148).

Solution. According to the theory the desired message с is one of the roots of 
the quadratic equation x2 + Bx -  m = 0 in the ring Z / NZ. In this case we should 
solve the equation x2 + 4 3 x - 148 = 0 in the ring Z /5 5 1 Z . It can be rewritten in 
another form: x2 + 43x + 403 = 0. The roots of the equation we find by the standard

formula: x = f-  43 + л/432 -  4 • 403
(mod551) = ( - 4 3  + л/237 (mod 5 51). Taking

into account the results of the previous problem we obtain four variants of the
98-43 55 55 + 551 301-43 258

message: c = -------- = — = ---------- = 303; с = ----------= ----- = 129;
1 2 2 2 2 2 2

250-43 207 207 + 551 453-43  ^  ^ „c, = ----------= ----- = ------------= 379; c, = ----------- = 205. The first message is cc ,
2 2 2 4 2

the second, and the third does not have verbal decryption, and the fourth is decrypted
as “be” and is the desired message.

Problem 6.9. Use the ElGamal cryptosystem to encrypt the message “be”.
Solution, с = 205. Choose P = 509. Then we can take g = 2. Let x = 400. Then

h = g x(m odP) = 2400(mod509) = 2256fl28fl6(mod509); here

24 =16; 2 8 =256; 2 16 = 2 5 6 2 s  384(mod509);

232 = 3842 (mod 509) = 355; 2 е4 = 355 2(mod 509) = 302;

2128 s  3022 (mod 509) = 93; 2256 = 93 2 (mod 509) s  505.
Hence h = 2 400(mod509) = 505 • 93 • 384 (mod509) = 181. Let k  = 279. Then 

К  = hk (modP) = 18 1279(mod509) = 181256f2̂ 4+2+I(mod509)
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1812 = 185(mod509); 1814 = 1852(mod509) = 122;
181s = 1222(mod509) = 123; 18116 = 1232(mod509) = 368;
18132 = 3562(mod509) = 30; 18164 = 302(mod509) = 391;
181128 = 3912 (mod509) = 181; 181256 = 1812 (mod509) = 185.

Hence,
К  =18l256fl64'4+2+1 (mod509) = 185 • 368 • 122 • 185 • 18 l(mod509) s  429.

At last we obtain the encrypted message:
m = cK {mod P) = 205 • 429(mod509) = 397.

In addition to the encrypted message one compute the public session key 
Osk = ^ (m o d  P) = 2279(mod 509) = 22э6+16+4+2+1 (mod 509). Taking into account 
the above calculations we have Osk = 375. Thus, an addressee is sent the message:

(P, g, К m, Osk) = (509,2,181,397,375).
Problem 6.10. Decrypt the ElGamal cryptotext 

(P, g, h, m, Osk) = (509,2,181,397,375) if the addressee knows the secret key 
x  = 400.

Solution. The addressee computes К  = Oxsk (mod P) = 375 400 (mod 509) = 429. 
Then using the extended Euclidian algorithm he calculates 
^ “'(m odi5) -  429"1 (mod509) = 439. Then

c - m  ■ K~x(modi3) = 397 • 439(mod509)- 2 0 5 -the  word “be”.
Problem 6.11. In the role of an unauthorized user not knowing the secret key x 

try to «hack» -  decrypt -  the message (P, g, h, m, Osk) = (509, 2,340, 233,375). 
Solution. We construct a fragment of the cyclic group

< g  > = < 2 > = {2, 22 = 4,...}

until we obtain the equality 2X = 340 and find x . Then we repeat the calculations 
carried out in the solution of the previous problem.

Self Instructional Problems for Laboratory Study № 6 «Modern
Cryptosystems»

1 - 2 .  Decrypt an RSA cryptotext (m, e, n).
3 - 4 .  Decrypt a Rabin cryptotext (n, B, m).
5 - 6 .  Decrypt an ElGamal cryptotext (P, g, h, x, m, Osk).

Variant 1.
1. (899,3,101671). 2. (102020525,1,102030101).
3.(150419,15,90244). 4. (205916939,666,39843864).
5.(47,11,19,13,42,18). 6. (17,6,14,7,13,3).

Variant 2.
1. (201505,1,202451). 2. (1015081425,1,1015123177).

Here
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3.(155357,1001,9700). 4. (319372663,1024866,234853376).
5. (19,10,7,12,5,17). 6. (37,13,25,14,34,24).

Variant 3.
1. (10305,1,10349). 2. (205121225,1,205278781).
3. (101617,49,24873). 4. (1614612973,260740,455160832).
5. (43,18,40,8,19,13). 6. (29,8,23,16,3,15).

Variant 4.
1. (40169,3,82933). 2. (112090305,1,112100657).
3. (72329,252,23494). 4. (201043727,987654,40098000).
5. (61,10,58,12,38,22). 6. (59,6,40,7,26,51).

Variant 5.
1. (17243,3,20737). 2. (205011419,1,205145103).
3. (51959,26,27841). 4. (1003621907,1485,149729920).
5. (47,5,10,19,43,43). 6. (67,11,58,3,20,56).

Variant 6.
1. (90305,1,91709). 2. (116161205,1,116259959).
3. (200623,573,145601). 4.(719026801,322180,521161600).
5. (67,12,33,4,61,39). 6.(11,8,3,6,10,6).

Variant 7.
1. (1650,3,12091). 2. (201040705,1,201043727).
3. (91709,398,36789). 4. (1828776151,14789255,876149760).
5. (17,6,8,6,8,15). 6. (17,10,5,7,6,12).

Variant 8.
1. (71515,1,72329). 2. (318050113,1,319372663).
3. (183641,26,91364). 4. (1106091083,5678,524381440).
5. (17,5,12,9,9,3). 6. (17,7,2,10,14,8).

Variant 9
1. (161523,1,162521). 2. (308051919,1,308880049).
3. (111101,448,73728). 4. (827010683,643345,369698560).
5. (23,19,11,5,22,15). 6.(23,18,1,11,18,13).

Variant 10.
1.(121523,1,123463). 2. (1801140705,1, 1828776151).
3. (101671,800,6187). 4. (722603899,621040,491328320).
5. (43,18,4,12,5,16). 6. (67,11,12,13,62,25).
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Variant 11.
1. (100123,1,101617). 2. (1601160518,1,1614612973).
3. (162521,1000,160525). 4. (1527869719,376660,1146343936).
5. (61,26,24,9,15,8). 6. (53,21,35,7,37,29).

Variant 12.
1. (39665,3,101671). 2. (1524090405,1,1527869719).
3. (12091,50,157). 4. (116259959,157861,92205230).
5. (47,30,28,10,40,42). 6. (47,45,16,4,5,17).

Variant 13.
1. (200501,1,200623). 2. (718152312,1, 719026801).
3. (152051,128,5721). 4. (9643325473,35665346,4092805818).
5. (47,41,26,5,16,4). 6. (43,33,37,7,2,20).

Variant 14.
1. (110525,1,111101). 2. (815140525,1,827010683).
3. (123463,333,31005). 4. (308880049,2924785,220730336).
5. (43,33,2,9,23,27). 6.(31,17,26,5,12,24).

Variant 15.
1. (152312,1,155357). 1.(718081404,1,722603899).
3. (182731,48976,243087488). 4.(1671731863,52746,1364142592).
5. (31,24,23,9,4,15). 6.(31,24,4,6,3,16).

Laboratory Study № 7 «Ideals of Rings»
Necessary Theoretical Data

Definition 7.1. A ring is a nonempty set К  equipped with two binary operations 
called addition (+) and multiplication (•); К  is required to be an abelian group under
addition; multiplication and addition are linked by the distributive laws:

{a + b) ■ с = a ■ с + b ■ c; a-(b + c) = a-b + a- c
for all a ,b ,c  e К .

The rings are distinguished by number of elements (finite or infinite) and 
properties of multiplication (associative and nonassociative, commutative and 
noncommutative, with a unity and without unity, with zero divisors and without 
divisors of zero, etc.).

Definition 7.2. A subring of a ring К  is a subgroup of the additive group (K,+) 
that is the ring itself, i.e., it is closed under multiplication in the ring K.

Definition 7.3. A  subring J  of a ring К  is said to be a left ideal of К  if for all 
к e  К  and for every j  e  J  it holds j k e J , i.e., J k c z J .  I f  k J c; J  for all elements 
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к е  К  then J  is called a right ideal. An ideal that is both left and right is said to be a 
two-sided ideal.

In any ring К  the sets {0} and К  are formally the ideals of K. They are called 
improper ideals unlike the rest proper ideals.

Theorem 7.1. For every element a o f a ring К  the sets a K  = {ak \ к  e. K }  
and Ka  = [ka\ к  e  K ) are respectively a left and a right ideals o f K.

Definition 7.4. The left and the right ideals from Theorem 7.1 are called, 
respectively, a left principal ideal < a > and a right principal ideal < a > of a ring К , 
i.e., left and right principal ideals are subrings of a ring K,  that consist of all 
elements ak, к  e К  or ka, k e K  accordingly.

Theorem 7.2. In the ring o f integers, Z , every ideal J  is principal.
In every ring {0} is a principal ideal.
Definition 7.5. An ideal M  (left, right, two-sided) of a ring К  is called 

maximal if there exists no other proper ideal J  such that M  c= J .
Theorem 7.3. In the ring o f integers an ideal J  = < p >  is maximal iff p  is a 

prime number.
Definition 7.5. A polynomial /  e P[x] is said to be irreducible over P  if /  has 

positive degree and f(x) = bc with b , c e P  implies either b or с is a constant 
polynomial.

Theorem 7.4. In the ring o f polynomials /* [x] with coefficients in a field  P  
every ideal J  is principal. The ideal J  = < m (x) > generated by a polynomial 
m(x) is maximal iff m(x) is irreducible over P .

Problems for Classroom
Problem 7.1. Give the definition of a ring.
Problem 7.2. Give ten examples of rings.
Problem 7.3. Do there exist finite noncommutative rings?
Problem 7.4. Do there exist rings without 1 ?
Problem 7.5. Give examples of subrings in Z . Are your subrings ideals? Does 

the set I  of integers with the remainder of 1 when divided by 5 form an ideal in the 
ring Z ?

Solution. Suppose /  e  I, g  e  I . Since /  and g  give remainder of 1 when 
divided by 5 then f  + g  give the remainder of 2 when divided by 5. Hence 
f  + g  <£ I . Therefore /  is not closed under addition. Thus, I  is not a subring and 
moreover is not an ideal.

Problem 7.6. The same questions for the polynomial ring. Does the set I  of 
polynomials with even free terms form an ideal in the ring Z[ x \  of polynomials with 
integer coefficients?

Solution. Determine whether I  is a subring.
Suppose / (x) e / ,  g(x) e / . Then

f i x )  = anx n + an_xx n~x +... + axx  + aQ, g(x) = bmx m +bm_lx m~1 + ... + bxx  + bQ,
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