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Introduction

Students of BSUIR study the whole range of issues related to handling,
storage, transfer and protection information against interference and unauthorized
access. Relevant lecture courses are relatively new, many of them are in the dynamics
of formation or development in accordance with the technological revolution and
needs of time, and require to explore new areas of mathematics which are not
included in the classical course "Higher Mathematics" - appropriate facilities of
higher technical education. Such courses as "Digital Signal Processing”, "Applied
Coding Theory", "Cryptographic methods of information protection”, and a number
of others require a thorough knowledge of modern algebra.

Therefore Department of Higher Mathematics develops the course "Applied
Mathematics"”, which lays a foundation of modern applied algebra and creates a
mathematical foundation for information protection against interference and
unauthorized access. Over the years, this course is successfully read to BSUIR
students of specialities "Information™, "Telecommunication Networks", "Multimedia
Information Distribution Systems”, "Information Security in Telecommunications".

Experience shows that deep and reliable acquisition of new material is not
possible without its thorough elaboration during practical and laboratory classes. This
publication is a study guide to carry out practical and laboratory classes on the course
named above. A working model for eight practical and laboratory studies on the
main themes of the course is proposed. Depending on tradition, lab assignments can
be considered as hometasks for self-study and personal development.



Laboratory Study Ne 1 «Number Theory»
Necessary Theoretical Data

Below we consider: the set of natural numbers, denoted by N; the set of
integers, denoted by Z.

The set of integers Z is countable, consists of elements 0; +1; £2;...; £n;... .
Two algebraic operations are defined on it - addition and multiplication. These
operations have the following properties (for any a,b,c e Z):

1. associativity: a+(b+c)={a+b)+c;ae<(bec)=ambec);

commutativity: b+a=a+b; a-b=b-a;

2. there exist the identity elements 0 and 1:

a+0~0+a—a; a-l=1-a=a;.

3. (a+b)-c =a-c +b-c - distributive law;

4. for every integer a e Z there exists a unique additive inverse, i.e., there exists
a unique integer b such that a+b=b+a =0. The additive inverse of a number
a e Z is also called the opposite number of a.

Theorem 1.1 (the division algorithm). For any integers a and b, b” 0, there
exist unique integers gand r, 0<r <|Z, suchthat a=bmg +r.

In this equality r is called the remainder and q is called the quotient (the
incomplete quotient if r ~ 0) resulting from division of a by b.If r = 0 then b and
g are called divisors or factors of a. Everyone has been able to find the quotient

and remainder by long division method since one’s school-days.
Corollary. Let b be a natural number, b> 1. For any integer a and the

maximal integer m> 0 that satisfies the condition a >bmthere exist unique integers
cif, 0 <ai <b, 0<i <m, such that
0o —x{ambm+am>X>m"' +...+ diq).

This equality is written shortly as a =z+(amam|l...a0)b or a =+*amaml..n0
(if b is known from context) and is called the notation of a in positional base b
numeral system or in numeral system of base b. The usual positional base 10 numeral
system (it is also called the decimal system) seems to be normal and natural. But in
different situations other bases are more convenient. For instance, on a computer’s
micro level all calculations are carried out in the binary (base 2) numeral system. The
hexadecimal (base 16) positional numeral system is used for conversion from the
decimal to the binary numeral system.

Lemma 1.1. Ifin the equality ax+a2+m.+an= +b2+...+bmall items are
integers and all except maybe one are divided by an integer d, then this excluded
item is also divided by d.

Definition 1.1. If integers axa2,...,an are divided by an integer d then d is

called their common divisor.
Subsequent discussion deals only with positive integer divisors.



Definition  1.2. The largest positive integer among all common divisors of
integers af{,a2,...,an is called their greatest common divisor and is written as

GCD(aua2,...,an).
Theorem 1.2. If a=Db-gq +c then GCD(a,b)=GCD(b,c).
Theorem 1.2 allowed Euclid (approximately 2300 years ago) to base the
following fact.
Theorem 1.3. The greatest common divisor ofintegers aand b (a>b) is equal
to the last differentfrom zero remainder in the chain ofequalities:
a=b-qx+r{;
b=r[-02+r2;

m_2 =rn_i eqn +rn; i.e., m=GCD(a,b).

M~ N
Theorem 1.3 formulates the Euclidean algorithm (also called Euclid’s
algorithm) for computing the greatest common divisor of two integers. The Euclidean
algorithm can also be formulated in another way that gives us the second method to
find the greatest common divisor. Namely, we compute the differences
a-b =c; b—c=d;... until we get the last non-zero difference which coincides
with GCD(a, b).
Example 1.1. Using the Euclidean algorithm find GCD(72, 26).
Solution. In accordance with Theorem 2.2 we have 72=26-2+ 20;
26 =20-1+6; 20 =6-3+2; 6=2+3. Hence, GCD(72, 26) = 2.
Theorem 1.4. If d =GCD(a,b) then there exist two integers n and v such that
thefollowing identity (Bezout’ identity) takesplace: d —au +bv.
Example 1.2. It follows from example 1.1 that
2=20+6m-3) =20+ (26 +20 *(-1)) *(-3) =204+ 26 +(-3) =

= (72 +26-(-2))-(4 +26-(-3)) =72-4 +26-(-11).

Such a way of computing the integers n and v for Bezout’s identity is called the
extended Euclidean algorithm. It consists of two steps. The first one (up-sweep step)
is actually the Euclidean algorithm. On the second step (it is called down-sweep step)
we sequentially express remainders for every stage of the previous step and combine
like terms.

Definition 1.3. A natural number p >1 is called a prime number if it has no
positive integer divisors other than 1andp itself.

Theorem 1.5. Every natural number n> 1 is either prime or has a prime
divisor.

Suppose thatp and g are natural numbers greater than 1; then from the formula
n=p-q it follows that either p or g lies in the interval [2;Vw]. We obviously
have that the least natural divisor p >1 ofa natural number n > 1 is a prime number.

Historically the first method of verifying whether a natural number n > 1 is prime or
not was a method called “the sieve of Eratosthenes”. It works as follows: one divides
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a given natural number n > 1 by all prime numbers less than or equal to Jn. If any
of the divisions come out as an integer then the original number is not a prime.
Otherwise it is a prime. The sieve of Eratosthenes was created by Eratosthenes, an
ancient Greek mathematician. Nowadays there are fairly large number of primality
tests.

Theorem 1.6 (Euclid’s theorem). The number ofprimes is infinite. .

Theorem 1.5 establishes importance of prime numbers: every nonzero natural
number can be factored into primes. Therefore primes are building blocks of all

natural numbers.
Definition 1.4. Two integers a and b are said to be coprime or relatively prime

if GCD (a, b) =1I.

Theorem 1.7 (coprimeness criterion). Two integers a and b are relatively
prime iffthere exist integers n and vsuch that a-u +b-v =1

Corollary. GCD(ac, b) =1ifand only if GCD(a, b) - 1, GCDic, b) =1

The following property of primes is very important in number theory and its
applications.

Lemma 1.2. Let the product ab of integers a and b is divided by an integer ¢
and GCDia,c)=1 Then b is divided by c.

Theorem 1.8 (the fundamental theorem of arithmetic). Every integer n> 1

can be written as a unique product (up to the order ofthefactors) ofprime numbers
Nn=xpxep2e...°ps.

If we collect the same factors in this equality we obtain the canonical
decomposition of n: n—pxn W 2n «...p? .

Example 1.3. Let consider examples of the canonical decomposition of integers:

a) 196 = 2-98 = 2-2-49 = 22-72, b) 212-1 = 4095 =32-5-7-13.

Theorem 1.9. Let m be a natural number, m> 1, thenfor any integers a and

b thefollowing conditions are equivalent:
1) a and b leave the same remainder upon division by m\

2) a- b isdivided by m, ie, a—b =mq for asuitable integer g\
3) a=b+mq for some integer q.
Definition 1.5. Two integers a and b are said to be congruent modulo m if they

satisfy one of the conditions of Theorem 19. It is denoted by the symbol
a=2)(modm) or a=b(m) which is read “a is congruent to b modulo m”. m is

called the modulus of the congruence.

Example 1.4. -5 =7(mod 4) = 1I(mod 4) s 23(mod 4) 5 3(mod 4).

Example 1.5. Suppose a=mq +r; then a=r(modm) , i.e., every integer is
congruent modulo m to its remainder upon division by m. It follows from definition
1.5 and the second condition of theorem 1.9 (because a —r is divided by m) .

Basic properties of congruences

1. Let be a =2Z>(modm). Then (axc) ={b+c)(modm) for any integer
means that we can add (subtract) the same integer on both sides of a congruence.
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2. We can add and subtract congruences term by term: if a =6(modm),
¢ =d(mo&m) then (a +c¢) = (b + ¢/)(mod m)\ (a—c) = (b —t/)(mod m).

3. We can also multiply congruences term by term: if a = &(modm),
¢ =d{modm) then ac = 6<i(mod m).

4. We can raise both sides of a congruence to the same natural power: if
a=Db(modm) then an = &\mod m).

5. If in the congruence a = 6(mod m) integers a, b, m have a common factor d

then the congruence can be reduced by it: —= mod v )

6. A congruence can be reduced by a common multiple coprime to modulus: if
a—daxb=dt\, GCD (d, m) =1 then from the congruence dax= dt\ (mod m) we
obtain: ax=bx(modm).

7. We can multiply both sides of a congruence on an arbitrary integer factor: if
a =&(modm) then at =Z»(mod m) for an arbitrary integer t.

8. Reflexivity: a=a (mod m) for an arbitrary integer a and any natural
number m > 1.

9. Symmetry: if a=Db(modm) then b =a (mod m).

10. Transitivity: if a = b (mod m) and b =c (modm) then a =c (mod m).

Theorem 1.10 (Fermat’s Little Theorem). Let p be a prime number which
does not divide an integer a. Then ap~l =1 (mod p).

Congruence theory and little Fermat’s theorem allow us to find the remainder in
division of a large natural number by a prime number.

Example 1.6. Find the remainder in division of 391409 by 31.

Solution. 31 is a prime. 39 is not divided by 31. Therefore 39j0 =I(mod31).
Hence 3910 = 39303+ = 3929(mod31). Further 39 =8(mod31). Therefore in
accordance with the fourth property of congruences we have 395= 8f\ = 2(mod 31).
In binary notation we obtain: 29 = 11101. Hence, for an arbitrary natural a we have
a29=a2 m2 -a2 -a. Further, 394 = 84s5=22(mod31). Therefore,
398=(394)2=42(mod31). Then 3916=(398)2=162(mod31) = 8(mod31). Hence,

390 = 8164 «8(Mm0d31) = 4«4 +8(mod31) = 4(mod31).

Thus, the remainder in division of 3910 by 31 is 4.

Problems for Classroom
Problem 1.1. Find the canonical decomposition for numbers
a =627, b = 399.

Solution.



627 3 399
209 1 133
19 19 19

1

Problem 1.2. Find GCD(627, 399) using:

a) the Euclidean algorithm; b) the prime decomposition.

Solution. Let use the Euclidean algorithm:

627 =399 «1+228;

399 =228 « 1+ 171;

228 = 171 -1 + 57,

171 = 57* 3. Hence GCD (627; 399) = 57.

We find GCD(a, b) using the prime decomposition of numbers a and b
obtained in the solution of Problem 1.1:

627 = 3-11- 19; 399 =3-7 19

Hence, the greatest common divisor is equal to the product of the same factors
in the decomposition of the given numbers: GCD (627; 399) = 3 » 19 = 57.

Let find GCD(a, b) by the subtraction method:

627-399=228; 399-228 =171; 228- 171 =57; 171-57=114;

114 - 57 = 57; 57 - 57 = 0. Hence, GCD(627; 399) = 57.

Problem 1.3. Using the extended Euclidean algorithm find integers u, u,
satisfying the Bezout’s identity: awu+bv=GCD (a, b)for the integers
1= 110; b =48.

Solution. At first we find GCD (110, 48) by the Euclidean algorithm:

110=48-2+14;

48= 14 -3 + 6,

14=6-2 +2;

6 =3-2. Hence, GCD (110, 48) = 2.

Now we construct the Bezout’s identity for the given aand b :

110 =48 «2 + 14; therefore 14 = 110 + 48 «(-2);

48 = 14 3 + 6; therefore 6 =48 + 14 n(-3);

14 = 6 «2 +2; therefore 2 = 14 + 6 *(-2). In this equality we substitute the
above expression for 6 and combine like terms relatively 48 and 14.
S02=14+6¢(-2) =14+ (48 + 14 ¢(-3))(-2) = 14 «7 + 48 «(-2).

Substituting the above expression for 14 in the resulting expression for
GCD(110,48) =2weget2= 147 + 48 «(-2) = (110 + 48 m(-2)) 7 + 48 m(-2) = 110
o7 +48 -(-16)= 2.

Hence 627 = 3-11-19, 399 = 3-7-19.



Problem 1.4.

a) represent the decimal number 137 in the binary numeral system.
Solution. We iteratively divide 137 by 2:

1371 2

12 1681 2

17 681 341 2

16 0 341171 2

The required representation is formed by the remainders written in the reverse order:
137 = 100010012
b) transfer the number 1030010012 to the decimal system:
1000100 12- (1 .27+ 0.26+ 0.25.0.24+ 1.23+ 0.22+ 0.21+ 1.2°) =
=76 543 21 0.
(27+23+1)10= 128 + 8 +1 = 13710,
c) transfer the number 10000 to base 8 number system:

100001 8

8 1250 | 8
20 .g 1 156| 8
16 45 8 1198
40 40 76 16121
40 50 72 3 01

0 48 4 2
2

1000010= 234208,

Problem 1.5. Multiplication and addition in base 16 number system.

The hexadecimal numeral system uses numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and
letters A, B, C, D, E, F. Symbols A, B, C, D, E, F are used to represent the following
decimal values: letter A - value 10, letter C- 11, C- 12,D- 13, E- 14, F- 15

Let construct Table 1.1 and Table 1.2 to perform arithmetic operations in the
hexadecimal numeral system.
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Table 1.1Hexadecimal Addition Table

EETMOOT>»©oon~N T wow

(=
N

4 5 6 7 8 9 A B
4 5 6 7 8 9 A B
5 6 7 8 9 A B C
6 7 8 9 A B C D
7 8 9 A B C D E
8 9 A B C D E F
9 A B C D E F 10
A B C D E F 10 11
B C D E F 10 11 12
C D E F 10 11 12 13
D E F 10 11 12 13 14
E F 10 11 12 13 14 15
F 10 11 12 13 14 15 16
10 11 12 13 14 15 16 17
1 12 13 14 15 16 17 18
12 13 14 15 16 17 18 19
13 14 15 16 17 18 19 1A
Hexadecimal Multiplication Table
4 5 6 7 8 9 A B
o 0 0 0 0o O o0 O
4 5 6 7 8 9 A B
8 A C E 10 12 14 16
C F 12 15 18 IB IE 21
10 14 18 1C 20 24 28 2C
14 19 IE 23 28 2D 32 37
18 IE 24 2F 30 36 3C 42
1C 23 2A 31 38 3F 46 4D
20 28 30 38 40 48 50 58
24 2D 36 3F 48 51 5H5A 63
28 32 3C 46 50 5A 64 ©6E
2C 37 42 4D 58 63 6E 79
30 3C 48 54 60 6C 78 84
34 41 4E 5B 68 75 82 8F
38 46 54 62 70 7E 8C 9A
3C 4B 5A 69 78 87 96 A5

EETmMmOoo

12
13
14
15
16
17
18
19
1A
IB

mm QO O

m m m

12
13
14
15
16
17
18
19

IB
1C
ID

Table 1.2

1C
2A

46
o4
62
70
7E
8C
9A
A8
B6
C4
D2

Rk EBTT

15
16
17
18
19
1A
IB
1C
ID
IE



Now let consider on a n example how two numbers can be added directly and
with Table 1.1.
%A91F
+ 29873

S41F2
F + 3 =12 (write down 2, transfer 1to the senior level);
7+7=E+1=F (write down F inthe sum);
9+ 8 =11 (write down 1, transfer 1to the senior level);
A+9+ 1=13+ 1= 14 (write down 4, transfer 1to the senior level);
8+2+1=/1+1=5 (write down B).
Table 1.1 is used as follows: the first addend (in the given example F, 7, 9, A

or 8) is found in the top row of the table; the second addend
(in the given example accordingly 3, 7, 8, 9 or 2) is found in the leftmost column, and
the sum of numbers is found at the intersection of columns and rows:
7AC93.F94
+9C78F.F89

117 42 3.FI D
Addition table (see Table 1.1) can be used as subtraction table:
_ 13086
8988

AGFE

6 -8 (subtract the ones columns. Since we can’t subtract 8 from 6 we need to
borrow “1” from the tens column. Our “6” in the ones column becomes “16”. The
“8” in the tens column becomes “7”);

10+6—8=16—8=E;

7 -8 (subtract the tens column. Since we can’t subtract 8 from 7 we need to
borrow “1” from the hundreds column. The hundreds column contains 0. Therefore we
need to borrow “1” from the next column to the left. As a result “1” from the fourth
column becomes “10” for the third column; “7” in the tens column increases to “17”. “3”
in the fourth column is replaced by “2”; “0” in the hundreds column becomes “F”);

10+7-8=17- 8=F;

F-9=6;

2 -8 (subtract the fourth column. Since we can’t subtract 8 from 2 we need to
borrow “1” from the fifth column. “2” in the fourth column becomes “12”);

10+2-8 =12-8=",

To find the difference between two numbers with Table 1.1 we find the
subtrahend in the top row, find the minuend in the column corresponding to the
subtrahend, and take the difference in the leftmost column in accordance with the
minuend.

The multiplication is carried out as follows: 8-4 =20 (write down 0, carry 2
to the senior level).



8-9 =48 + 2 = 4A (write down A, transfer 4 to the hundreds level);
10=A
12=C

87 =38+ 4 = 3C (write down 3, write down C);

7w = 1C (write down C, carry 1to the senior level);

79 —1=3F +1 = 40 (write down 0, transfer 4 to the senior level);

7 w7+ 4=31+4 =235 (write down 3, write down 5);

34 = C (write down Q;

39 = 1B (write down B, carry 1to the senior level);

37+ =15+ 1= 16 (write down 1, write down 6).

Let sketch the scheme of solution (we use table 1.2):

X 8 X 7 X 3
1 i 1
4 —» 20 4 —» 1C 4 —» C
4 1 1
7 -> 38 7 — 35 7 —> 15
4 1 i
9 —> 48 9 —» 3F 9 > IB
Problem 1.6.

a) find the remainder in division of 210 by 3.

Solution. The first method: the remainder when 2 is divided by 3 is 2, the
remainder when 22 is divided by 3 is 1. If we continue to raise 2 to the power and
divide it by 3 we find that the remainders alternate: 2, 1, 2, 1, 2 ... . Due to evenness
of 100 the remainder of division ofthe required number by 3 is equal to 1

The second method: using congruences and arguing as in Example 1.6 we see:

0 =45= @+ )D=150=1;

b) find the remainder of 19891990 -1991 + 19923 upon division by 7.
Solution. Replace every number with its remainder of division by 7:

1989 |_7 1990 7 1991 = 7 284 + 3;
14 1284 14 284
58 59 1992 = 7-284 + 4,
56 56
29 30
28 28
1 2

12 3+4)J=6+64=70. 70 :7= 10. Hence the remainder is equal to O.
c) find the remainder in division of 9 by 8.

Solution. Replace 9 with its remainder 1 of division by 8. We have 110 = 1.
Hence the remainder of division of 910 by 8 isequal to 1;
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d) find the remainder of 3198 upon division by 7.

Solution. The remainder when 3 is divided by 7 is 3. The remainder when 32 is
divided by 7 is 2. Further it is sufficient to multiply the remainder by 3 and make a
conclusion. The remainder when 33is divided by 7 is 6, the remainder when 34 is
divided by 7 is 4, the remainder when 35 is divided by 7 is 5, the remainder when 36
is divided by 7 is 1, the remainder when 37 is divided by 7 is 3. We got one of the

previous remainders, i.e., we have a cycle. The number 37 has the same remainder
upon division by 7 as 31 Therefore the length of the cycle is 6. 1989 = 331-6 + 3.

The number 3190 gives the same remainder upon division by 7 as 33, i.e., 6.

Self Instructional Problems for Laboratory Study Ne 1 «Number Theory»
1. Find the canonical decomposition of the integers a and b.

2. Find GCD(a,Z>) using:

a) the Euclidean algorithm; b) the prime decomposition of integers.

3. Using the extended Euclidean algorithm find integers u, n satisfying

Bezout’s identity: au +bv- GCD (a,b).
4. Represent the given decimal number ¢ in base q, 16, and 2 numeral systems.

5. Evaluate ... in base 16 numeral system.
Variant 1.

1-3. a=101398751, b= 326147777. 4. q =1, c=972405821.
A2 -D BC

5. Evaluate the determinant -3B 1F 5C
-EA 18 98

6. Find the remainder in division of 1998 2001 by 29.

Variant 2.
1-3. a=5999801, 3=48685811. 4. q =5, c =5999801
i DAx—Fy- 8§,
5. Solve the system of equations
[20x + 83; = 90.

6. Find the remainder in division of 2005 2008 by 17.

Variant 3.
1-3. a=660422941, b= 36481301. 4. q =8, ¢ = 5999801
\Dx - Fly =-6F,

5. Solve the system of equations
Bx +6\y =NF.

6. Find the remainder in division of 20012006 by 17.



Variant 4.
1-3. a= 9002242397, b =433817903. 4. g =1, ¢ =5090801 .
5. Evaluate the product of two matrices:

fBF -3A CDV A\ BB -17n
10 3£ -F2 -AD CF OE
-90 yv 2A -BA FB

6. Find the remainder in division of 2004 **® by 19.

Variant 5.
1-3. a= 9118515943, b = 3386496689. 4. q =1, c = 75928301
5. Evaluate the product oftwo matrices:

fB3 -3B FD'f CA BF -ET
A0 IE -FA -AC DF BO
[-9C BE DAj 1A -BC 3B,

6. Find the remainder in division of 1999 206 by 23.

Variant 6.
1-3. a =5336161097, b =196210799. 4. q =9, ¢ =73425826.

AB -2D FC
5. Evaluate the determinant -3 C AF BC .
-EF IA A8

6. Find the remainder in division of 1998 201 by 19.

Variant 7.
1-3. a = 7049964661, b = 168687989. 4. q =7, ¢ = 93475825.
2B -AD BC
5. Evaluate the determinant -9C M8 2% .
-EE 4C AF

6. Find the remainder in division of 1997 2004 by 17.

Variant 8.
1-3. a= 83748733, b= 73435591. 4.~ =7, c= 86425836.



IB -2D FC
5. Evaluate the determinant -3 C AF BE

-E3 10 AS

6. Find the remainder in division of 1996 2003 by 11.
Variant 9.

1-3. a= 16254559, b= 1029073. 4. q =1, c= 86425836.

5. Evaluate the product (Fx2+1Ax- 3F)(Cx2- ABx +E3).
6. Find the remainder in division of 2006198 by 19.

Variant 10.
1-3. a= 6099377, b= 9568217. 4. q =8, c= 87625859.

5. Evaluate the product (Fix2+ BAx - 35)(CAx2- A3x+ED).
6. Find the remainder in division of 2010199 by 17.

Variant 11.
1-3. a= 7957549, b= 23118553. 4. q =1, c= 89605809.

5. Evaluate the product (B5x2+ CAx- 3A)(CDx2- ABx + E9),
6. Find the remainder in division of 2005190by 19.

Variant 12.
1-3. a= 16088437, b= 18216949. 4. q =1, ¢ = 38615802.

5. Evaluate the product (5”x2+ CBx- 2A)(CEx2- A8x+EF).
6. Find the remainder in division of 1995 2004by 16.

Variant 13.
1-3. a = 244604911, b= 61875907. 4.~ =8, ¢ = 79605819.

5. Evaluate the product {F5x2+ CBx- BA)(C5x2- AOx+ F9).
6. Find the remainder in division of 2011190 by 17.

Variant 14.
1-3. a= 356216713, b = 31238065. 4. g =1, c= 85678539.

5. Evaluate the product (45x2+ C2x - 3B)(C5x2- FBx + EO).
6. Find the remainder in division of 2005 2004 by 19.



Variant 15.
1-3. a = 7409621, b = 6793883. 4. g = 7. ¢ = 9605801.

5. Evaluate the product (A5x2+CCx—bA)(CFx2- 5Bx + EF).
6. Find the remainder in division of 2005 22by 29.

Laboratory Study Ne 2 «Residue Classes»

Necessary Theoretical Data

When we divide an arbitrary integer by a natural number m > 1 we obtain one of
m different remainders: 0,1,2,...,m- 1 In accordance with these remainders the set

of integers Z is divided into m disjoint classes of integers having the same
remainder when divided by m. Such classes are called congruence classes modulo LLI
or residue classes modulo LL. Depending on the remainders upon division by m the

residue classes are denoted as 0, 1,....,m-1. Thus we have class i =(mq+i\qeZ)
for every integer i- 0,1,2,....m -1. Every residue class is uniquely defined by any its

representative: for every natural number mqg +1i the class is mq+i=1i. The set of
congruence classes modulo L is denoted as Z/mZ. From the above it follows that
Z I mZ has Lelements and can be writtenas Z/mZ = jo, 1 1}.

By the second property of congruences (see theoretical data for the first
laboratory study) we obtain that for arbitrary classes k,I e Z /mZ and for arbitrary
kx, K26 K, /j,12 e/ the sums kx+/, and k2 + L are congruent modulo m . Therefore
k] +/, and k2 + 12 belong to the same class Z/ mZ. In a similar manner the products
kxel\ and k2+/2 lie in the same class from Z/mZ. Let define addition and
multiplication on Z/mZ. For any two residue classes keZ/mZ, leZ/mZ we
determine a sum class k®| so that the sum k +1 lie in the sum class for any
kek,l el. Similarly for any two residue classes keZ /mZ, le Z/mZ we define a

product class k1 so that the products k -1 lie in the product class for any
Kek,1g/.

Since addition and multiplication in Z/mZ are uniquely determined by addition
and multiplication of class representatives, properties 1 -5 of addition and
multiplication of integers (see theoretical data for the first laboratory study) are also
validin Z/mZ2Z:

1) K®i=1®k\ Ik - kl - commutativity;
2) K®(U®r)=(k®H@ r; k(lr) =(kl) r - associativity;
16



3) there exists the identity element (or the neutral element):
k® 0-k\ kI =k;
4) for every K e Z/mZ there exists a unique class /, such that Kk ® / = 0. It

Is obvious that I=m —k;

5 {k0 /)r =(kr)® (Jr) - distributive law.

As the operations of addition and multiplication in Z/mZ have the properties
mentioned above ZImZ belongs to the class of commutative rings with a
multiplicative identity and is variously called quotient ring, factor ring, residue class
ring or simply residue ring of Z modulo m.

Definition 2.1. An element K e Z/ mZ is called invertible if there exists a class
| ©«Z/mZ suchthat kl = 1. The class | is called the inverse class of k .

From the associative law for Z/mZ it follows that if Kk is an invertible class,
then the inverse class is uniquely determined.

Lemma 2.1. Let k&Z/ mZ be a class such that GCD(k, m) =1. Then:

1) forany | ®0 we have kIl ®O0;

2) K4 DK sk, if [j /2

3) the mapping / :x —>K X is injective and hence bijective on the set Z/mZ

(on the set of nonzero elements from Z/m2);

4) K is invertible in thering ZImZ.
Remark. Under the conditions of Lemma 2.1 we have GCD (d,m)=1

Therefore according to the coprimeness criterion there exist integers u,veZsuch

that ku+mv =1 Then 1=ku +mv =ku. Hence 1 isthe inverse class for K .
Lemma 2.2. Let ke Z/mZ be a class such that GCD (k,m) =d> 1. Then:

1) there existsaclass 170 suchthat kl =0;
2) there exists classes such that K -Ix=k -12;

3) forall / ®0 we get k -1 ®1, i.e., the class / is not invertible in the ring

ZImZ.
Theorem 2.1. A class Kk &Z /mZ ZImZ is invertible iff GCD(k, m) =I. If

m =p isaprime number then every nonzero class in Z /pZ is invertible. An inverse
class is also invertible. Theproduct ofinvertible classes is also an invertible class.
Since Z/mZ consists of finite number of elements, addition and multiplication
can be set elementwise in the form of tables.
Example 2.1. Let write down the addition and multiplication tables for the ring
Z/3Z

. ) ® 0 1 2
) . 2 0 0 0 0

17



1 1 2 0 1 0 1 2
2 2 0 I 2 0 2 I

From the multiplication table it is immediately clear that classes 1 and 2 are
inverse of themselves, i.e., all nonzero classes of Z/3Z are invertible in full
accordance with Theorem 2.1.

Definition 2.2. The Euler’s totient function (Euler function phi, the totient,
Euler’s phi function, the phi function) (p(/w) is a function of a natural argument

m > 1, counting the number of integers which are less than or equal to m and

coprimeto m .
Here are the basic multiplicative properties of the Euler’s totient function.

Property 1. @ (p) =p —1 for any prime p.

Property 2. q(pn)=pn- pn~l for any prime p and an arbitrary natural
number n>1.

Property 3. If GCD (n, m) =21then ¢p(nmm) = (n) p(m).

Property 4.1f n = pxl/?22 «p &l is a canonical decomposition of 51 then

b(n) =nl1—2 1 1-
vV PiJ  PiJ P1J

Example 2.2. Let calculate o (48). From the obvious equality 48 =324 and
property 4 we get ¢ (48) =48 M1-1/3)(1-1/2)=16.

Example 2.3. Theorem 2.1 implies that there are exactly ¢ (1) invertible
classes in the ring Z/mZ. For example, ¢(12) = 4. Hence there are exactly 4
invertible elements in the ring Z/12Z. Direct verification shows that these classes
are 1,5, 7,11.

Theorem 2.2 (Euler’s’ theorem). If m is a natural number and a is a positive
integer coprime to m then d p{m) = 1(mod m).

An equation of the form

anxn+a"’1l+...+ax +a0x® =0 (mod m),
where an,an x ...,a0e Z, neN, antO(ToinT), is called an algebraic

congruence equation of the «th degree and one unknown x
Assume that when we substitute x0 instead of x in a congruence we get a

correct numeric congruence. In this case X0 is called a solution of the congruence. At
the same time any integer of the form x0+ mt is also a solution of the congruence.

Therefore the residue class x0 can be considered as a solution of the algebraic

congruence. The universal method to solve the algebraic congruence is to examine it
with a complete system of residues modulo m, i.e., integers 0,1, 2, —1. The

number of solutions of the congruence is equal to number of elements which belong
to the complete residue system and satisfy the congruence.

18



Example 2.4. Solve the congruence x5+ x+1 =0 (mod 7).

Solution. Let consider the complete system of residues modulo 7: 0,1, 2, 3, 4,
5, 6. Substituting the elements of this system into the congruence we obtain that only
two numbers x =2, x =4 satisfy the congruence. Therefore the given congruence
has two solutions: x = 2(mod 7), x = 4(mod 7).

While solving a congruence it is convenient to use transformations leading to
equivalent congruences.

Problems for Classroom
Problem 2.1. Compute cp(sa) for all natural numbers n from 2 till 12.

Problem 2.2. Compute ®(60), $(81), cp(89), 0(2017), cp(2018).

Solution. 60 = 2 3+5. By the property 4 of the Euler’s totient function we
have

IV IV n 12 4
cp(60) = 60 (1— 1—  1— =60 — ——=2-2-4=16.

\ 2y 5y 235

81 =34. Therefore in accordance with property 2 of the Euler’s totient

function, we obtain
$(81) =34- 331=34- 33=81- 27 =54,

V89 < 10; 89 is not divided by 2, 3, 5, 7 (any prime number less than 10) without a
remainder. Hence 89 is a prime number. Therefore ¢ (89) = 88.

Problem 2.3. Write down the addition and multiplication tables for the rings
Z/5Z and Z/6Z. Find pairs of mutually multiplicative inverse elements in these
rings. Calculate number of such pairs and compare this number with ¢(5) and ¢ (6)

respectively.
Solution is similar to the solution of Example 2.1.
Problem 2.4. Find the inverse element for every invertible element in the

residue class ring modulo 15.

Solution can be obtained by writing down the multiplication table in the ring
Z /15Z. Let consider another way to solve this problem.

By Theorem 2.1 there are ¢(15) = 8 residue classes comprime to modulo

m=15 in the ring Z/15Z. Direct verification shows that these classes form the set
G={i,2,4,7,8,n;il,14}.

In terms of congruences the equality a ex = 1 in case of a e G looks like
ax =\ (mod 15). From Euler’s theorem it follows that as = 1(mod 15). Multiplying

both sides of the congruence ax = 1(mod 15) by a , we get x =a (mod 15) in
accordance with congruence properties. Successively we compute:

27 =2324 =816 = 8(mod 15). Therefore (2) = 8;
47=46-4=163-4 = 4(modl5). Hence (4)-1 =4,
19



77=493-7=43-7=13, (7)1 =13;
117=1213-11 =13-11 =ll(modl5), (1I)"1=11;
147 =27+77s 8+13(mod 15) = (-7) *(-2)(mod 15) = 14(mod 15); (H) 1= 14.
Problem 2.5. Find the inverse elements for the classes 5, 6, 7 in the ring:
a) Z/12016Z; b) 2/2017Z.

Solution. GCD (2016,5) =1. Let find this greatest common divisor by the

Euclidean algorithm: 2016 = 5-403 +1. From the last formula we can easily obtain
Bezout’s identity for GCD(2016,5) =1: 1= 2016 1+ 5+(-403). In accordance with

the remark to Lemma 2.1 we have: 5-1 = —403 = 2016 - 403 = 1613. Verification:
5-1613 =8065 =2016-4 + 1=1(mo0d2016).
GCD (2016,6) =6> 1 Therefore 6 _1 does not exist inthe ring Z/2016Z .

Self Instructional Problems for Laboratory Study Ne 2 «Residue Classes»
1. Write down the addition and multiplication tables in the rings:

a)Z/kzZ\ b) ZInZ.

2. Compute ¢p(&), cp(n) for kK, n from the first problem; compute cp(ra) for the

integer m from the fourth problem.
3. Find pairs of mutually multiplicative inverse elements in the rings Z /kZ
and Z/nZ from the first problem.

4. Find the inverse elements for classes 5, 6,7 inthe ring Z/mZ.
5. Solve the congruence.

6. Solve the system of equations inthe ring Z/nZ:

7. Solve the equation x2+ 5x+ 7 =0 inthe ring Z/kZ.

Variant 1.
1 A=11;, «=24. 4. m=2001. 5. 132x3+ 143x2+23x-19 =5 (mod 11).

Variant 2.
1. k=13; n=18. 4 m=2002. 5 169x3+ 143x2+ 23x-19 =5 (mod 13).

Variant 3.
k=23; n-12. 4 m=2000. 5 253x3+46x2+29x-49 =5 (mod 23).
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1L A=17;

1. k=19

1. K=13;

1. k=7;

Variant 4.

e 21. 4. m=2003. 5 187xJ+ 34x2+ 23x-19 = 5 (mod 17).

n = 26.

« = 27.

n = 28.

1. k =29\n =12.

1l K=23;

1. k=31;

1. k =29;

« = 14.

«=12.

: « = 30.

Variant 5.

. m=2004. 5 132x3+ 143x2+ 23x-19 =5 (mod 11).

Variant 6.

. m=2005. 5 117x3+143x2+3x-19 =5 (mod 13).

Variant 7.

. m=2006. 5 63x3+154x2+23x-19 =5 (mod 7).

Variant 8.

. m=2007. 5 319x3+145x2+23x-19 =5(mod29).

Variant 9.

. m=2008. 5 253x3+115x2+12x-9 =5 (mod 23).

Variant 10.

. m=2009. 5 341x3+155x2+23x-19 =5 (mod31).

Variant 11.

. m=2010. 5. 85xJ+204x2+ 13x-19 =5 (mod 17).

Variant 12.

. m=2011. 5. 145x3+348x2+23x-17 =5 (mod29).

Variant 13.

; «=22. 4. w=2012. 5. 153x3+187x2+ 11x-9 =5 (modl7).

Variant 14.



1. £=19; «=14. 4. T =2013. 5 361x3+209x2+23x-11 =5 (mod 19).
Variant 15.
1 k=16; «=23. 4. T =2014. 5 95xJ+228x2+23x-9 =5 (mod 19).

Laboratory Study Ne 3 «Group Theory»
Necessary Theoretical Data

Definition 3.1. A group is a nonempty set G, equipped with a binary operation
(%), such that the following conditions hold:

1) associativity: a-(b-c) =(a-b)-c forall a, b, ce G;

2) there exists an identity element (neutral element), i.e., there exists an element
ee G suchthat gme=emy =g forall g e G;

3) for every element ge G there exists an inverse element, i.e., an element

h e G such that g ®h =h-g =e (written h =g~1).
The groups are distinguished by the number of elements and properties of the
binary operation (commutative and noncommutative) in accordance with the

following
Definition 3.2. A group G is said to be commutative or abelian if the operation

defined on it has (in addition to properties 1)- 3)) property-

4) bea=am forall a,be G.

Definition 3.3. The number of elements in a finite group G is called the order of
G, denoted by |G|.

Traditionally all additive groups (with addition operation) belong to the class of
commutative groups. For every natural number n there exists a commutative finite
group of order n. For example, (Z/nZ, +).

Theorem 3.1. Let a be a fixed element of an arbitrary group G. Let
<a> ={a)=e,a a2, ..,a l,a 2,...} be the set of all possible powers of the
elementa Then <a> is an abelian group.

Definition 3.4. The group <a> from Theorem 3.1 is called the cyclic group
generated by the element a.

Theorem 3.2. Let an element a e G has the property. an=e for some integer

n and ak ®e for all integers kK, 1<k<n. Then the cyclic group <a> has order n

and <a> ={a, a2,...,an=e¢gj.
Definition 3.5. The value n from Theorem 3.2 is called the order of the element
a gG. Ifno such n exists for an element ae G we say that aeG has infinite order.
From Definition 3.4, it follows that any cyclic group is abelian, contains a
countable or finite set of elements, and in the second case has a clear structure,

expressed by Theorem 3.2.
Theorem 3.3. For every prime p the set ofnonzero congruence classes in the
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residue class ring Z/pZ form a group Z/pZ* under multiplication and this group
Is cyclic.

Let Q be a finite set of n elements. Since the nature of its elements is not
essential, it is convenient to suppose that Q = {1 2,..., n}.

Definition 3.6. Every bijection, i.e., a one-to-one correspondence from Q to
itself, is called a permutation of Q .

It is convenient to present a permutation / :i—»f (i), i=12,...,n, in the

form of a table with two rows: / = In this table one lists
f(y /(2) .. f(nl

numbers 1, 2 in the first row and their image under permutation below it in the

second row. The composition of two permutations is just the composition of the
associated functions: (gf)(i) =g (f(0)- This composition is called the product of

permutations. Most often gf ®fg, i.e., the product of permutation is not

I 2 mn n\
commutative. Obviously the identity permutation e :\(I is the neutral
2 ... I

element for this product. Since composition of functions is associative, the product of
permutations is associative too. For every permutation there exists the inverse one.
To find the inverse permutation / -1 it is sufficient to interchange two lines in the

(1 2 .. n Jl
[/7(i) m o m)
row are placed in ascending order.

Thus, the set of all permutations of Q forms a group under product of
permutations. It is called the symmetric group on n elements and is denoted by Sn.

Theorem 3.4. The symmetric group Sn has order n\.

Let / be an arbitrary permutation from Sn. We delete columns with the same
elements from the table with two rows specifying /.

Definition 3.7. A cycle of length Ais a permutation of the form

« /() .. [/'""-'(O*
no /20 - [
A cycle of length 2 is also called a transposition. Cycles without common elements
are called independent cycles or disjoint cycles.

Theorem 3.5. Every permutation f gSn can be decomposed into a product
ofdisjoint cycles oflength |>2. This representation is unique up to the order ofthe
cycles.

Theorem 3.6. Every permutation f e Sn can be expressed as a product of
transpositions. Any two decompositions off contain either even or odd number of
transpositions.

Example 3.1. Factor the following permutation into a product of cycles and
transpositions:

table and then sort columns so that elements of the first
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J\ 234567 8 n
g~{2 45 317 96 8y
Solution.
S=( 2 4 3 56 7 9 8=@ 51 31 HA 2)(6 8)6 9)(6 7).
Decomposition of a permutation into a product of transpositions is not unique.
For example, the above permutation can be expressed as the following product of

transpositions:
F(1 2 4 3 5X6 7 9 8= 5@ 31 4@ 2)6 8)(3 4)(6 9X3 4X6 7).

Definition 3.8. A permutation / is called even (odd) if it can be written as the
product of even (odd) number of transpositions.

Problems for Classroom
Problem 3.1. Give ten examples of a group. Why do you think that this is really
a group? Is this an abelian group? Is your group finite?

Problem 3.2. Determine whether the set C of all complex numbers having unit
absolute value form a group under multiplication.
Solution. 1) zxe(z2 mz3) = (zl *z2) *z3 holds for any complex numbers;

2) for all complex number z we have z «1=1z =z .Hence e = ¥is the identity;
3) for every z=x+iye C we have |Z=n]x2+y2=1 by condition, i.e.,
x9 +y9 = 1; therefore z = x —iy isthe inverse for z=x +iye C :

ZZ = (X+1y)e(X—y) =z Z = (X—y) *(X +1iy) :x2 +y2 =1

Thus C is a group.

Problem 3.3. Determine whether the set of all positive real numbers is a group
under binary operation of raising to the power.

Solution. The answer is no because the associative law is not valid for this

operation. For example, (23)4 =212, and 23 = 28L
Problem 3.4. Factor the following permutation into a product of cycles and
transpositions:

Determine the parity (oddness or evenness) of /.
Solution. The permutation f moves 1linto 7, 7 into 2, 2 into 4, 4 into 1. By

Definition 3.7 a permutation acting on 1, 7, 2, 4 in accordance with this rule and
leaving all other elements unchangeable is called a cycle of length 4. In compliance
with Definition 3.7 this cycle is shortly written as (1724). Also f moves 3to 3, 5to

6, and 6 to 5. So the record / = (1724)(3)(56) indicates how / moves elements of
the set {l, 2, 3,4, 5, 6,7 }. Since a cycle consisting of one element coincides with
the identity permutation, it is usually omitted, i.e., f =(1724)(56) isthe product
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of cycles. Hence we obtain the decomposition of f into the product of
transpositions: / = (14)(1 2)(1 7)(5 6). As we see / is even.

/N2 4 6
Problem 3.4. Evaluate the product / <g~x for f - 3 6 ) . and
123456
9= 7326415
. 1234567 12 4 6
Solution, g 1:\/(3 325 7 4 IXI.Thenf—g 1= - 1 9
Problem 3.5. Find the product of cycles and transpositions
(3 2 8 9X1 6 8)(7 3X9 6 4 5XI 9.
Solution.
6 7 8 9
(3 2 8 9X1 6 8X7 3X9 6 4 50 9)=[\ \ * * 4 2 1 6

Problem 3.6. Write down the cyclic group generated by the permutation
12 3456 71
I=1g3 652 17 4

30|utionf2:1234567“/3_(\234567A
’ X 7 16 3 4 2 _’1437526
23456 M 1 23456 M
4= 254 16 7j;: I'5="§ 237 a4
T 23456 7 1 2 4 56 7N
7360542 I'7="4 712 6
fl 2 3 456 7 ri 2 4 5 6 7N
P5= %5 2 1436 7/ 9= 16 257 4
2 34 56 ™ 2 4 5 6 7N
ID=" 756 14 2 /n= 17 26
= 234567':e
B 2 34567 '
By Theorem 3.2 the group </ > has order 12.
1 00
Problem 3.7. Determine whether the matrix A= 0 1 0 with elements from
0 1 1

the residue class ring Z H Z is invertible.
Solution. Let find the determinant of A: det®™4 =170. Hence matrix A is
invertible.

Problem 3.8. Write down the cyclic group generated by the matrix from the
previous problem and determine its order.
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Solution. A2=0 1 o0 0 1. 0 0 1 o =E. Thus

<A>={a,A2=¢) has order 2.
Problem 3.9. Determine whether an additive group G is cyclic:
a) G is the group of real numbers;
b) G is the group ofrational numbers.

Self Instructional Problems for Laboratory Study Ne 3 «Group Theory»
1. Determine whether the given set equipped with the operation is a group.
2. a) factor the permutation / into the product of cycles and transpositions.

Determine its parity;

b) evaluate the commutator h = g~If~ xgf for the given permutations / and
g\

c) find the product of cycles and transpositions.

3. Write down the cyclic group <f >. Determine its order.

4. Determine whether the matrix B with elements from Z/2Z is invertible.
5. Write down the cyclic group < B > . Determine its order.

6. Find / 100 for the permutation f from Problem 2 affl’5 IWW for the matrix
from Problem 4.

Variant 1
1. The set of integers, Z, with subtraction operation.

) a)/_\2§22227129"b6=a 2345678091
7 u 18697329
(\ 0 N
c)(7 18 54 6 3)B8 2)(9 135). 4B=111
vi 10
Variant 2
1. The set ofaII positive real numbers with division operation.
3456 78 9" 1 234567
2. aji= 1'78524"UH5£ 41860973
O 1n
c) (3 19 5X4 2 3X8 9X7 16 5. 4B=110
111
Variant 3
1. The set of integers with operation m*n =mn +m.
2 )/ = fI2345678% _fI234567891‘I
' 9 83 1426 86 97 3 215)
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M 0 n
c) (4 2 6 9X5 2 7X7 9X7 3 8 1. 4B=111
11 0 oj
Variant 4
1. The set of integers with operation m*n=m+ In.
2.a)/:|12345678 9"b)*=| 345678
962813475 7 86 97325
fo 0 n
c) (2 4 9 5X1 3 7X5 8X7 1 3 6). 4.5=011.
u 1yoj

Variant 5
1. The set of integers with multiplication.

B 3456 7 8 gy ( 234567 8 9y
-3t =0 567892?11’ Hﬂ)g=u 18697323
(I 0 fj
2 8X2 9X7 1 4 8). 4.B= 00 1.
[0 1
Variant 6
1. The set of real numbers with division operation.
z_a)/:'123456789'_b)g: 3456
96 5172348 86 97
M 0 n
c) (7 3 9 5X4 1 3X8 6X9 1 2 5). 4B =00 1.
111 o]
Variant 7
1. The set of complex numbers with operation zx® z2 =Vziz2
12345678 9 12345678 ON
29/ = 981637452 418697325/
(L 0 1In
c) (9 14 5B 2 7)3 6)(7 2 6 8. 45= 001
[ 11y
Variant 8
1. The set of complex numbers with division operation.
w, A 3456789K, (1 2345678 ON
2= 0 r593612-P97 18697325
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28

C) (4 2 9 5X7 9 3)(6 1X8 6 5 1. 4.5= 100

Variant 9
1. Determine whether the symmetric difference of two subgroups is a subgroup.

, w fl 234586789 u M 2345678 9
2°a)/ =19 6 5 17 2843 b)?='41860973 25y

fO O N

c) (9 13 5X4 2 3X6 7X9 1 6 8). 4. B= 101

Vil 1 Oy

Variant 10

1. Determine whether the relative complement of two subgroups is a subgroup.
2 ay/ = 12345678 9 b)g:12345678 N
956172843 41869732 65

A 10

c) 8 19 5X1 2 3)(7 994 1 6 5). 4 B=101

VI 1 Oy

Variant 11
1. Determine whether the union oftwo subgroups is a subgroup.

2 a)/=1234567809\ b)g=f12345678 o

956712843 4 186 97 3 25
fo 0 n
c) 4 19 5(( 2 3)2 6)(3 16 8). 4 B= 111
Vil 0 Oy
Variant 12

1. Determine whether the intersection of two subgroups is a subgroup.

1 23456 7 8 9\ J\ 2345672879

'J~ 96517 482%DbBY )8~\4 18697325
(0 11
c) 19 50O 2 3)6 7)(1 2 45). 4B=111
V1l 1 oy

Variant 13
1. All complex numbers of the upper half plane with multiplication.



) 123456789

2.8/ = b)9=\4 1869732 5
/0 O M

©) (1 6 9 5X2 4 7X3 9X6 17 8). 4.B= 1 O o0
Vi1

Variant 14
1. All complex numbers of the right halfplane with multiplication.

2. a)/ = D) g = 2345678 9N
18697 3 25
A 1 11
c) 2 17 34 9 3X4 7X5 2 6 9). 45=101
VI 1 Oy
Variant 15
1 All complex numbers of the lower halfplane with multiplication.
2 3456789 f12 3456 789
-8/ = J\965172483, b)g =, 186973 2 5
(\ 11
c) (83 9 5@ 13)7 996 12 5). 4B=101
VI 1 Oy

Laboratory Study Ne 4 «Subgroups»
Necessary Theoretical Data

Definition 4.1. A subgroup of a group (G,*) is a nonempty subset H of G that
forms a group under the same operation. A subgroup H of a group G is called a
proper subgroup if H *G and H ¢{e}.

Theorem 4.1 (subgroup criterion). A nonempty subset H ofa group (G,) is
a subgroup iffa, b e H impliesthat ab~l e H .

Typically each group has a lot of different subgroups. For example, various
degrees of a fixed element of a group form a cyclic subgroup.

Theorem 4.2. Every subgroup ofa cyclic group is cyclic.

In every non-commutative group G a maximal subgroup of elements
commuting with all elements of G is of interest. This subgroup is called the center of
G and is usually denoted by Z(G); subgroups of Z(G) are said to be central
subgroups of G.

Definition 4.2. Let H be a proper subgroup of a group (G,.) and aeG . Then

the set aH={a}\h e H }is called a left coset of H in G.
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If there exists beG, b*H”JaH then it is possible to construct a new left
coset bH and so on.

Similarly one can construct a right coset. If every left coset coincides with the
corresponding right coset aH-Ha then the cosets are said to be two-sided. For
example, in any abelian group every left coset is the same as the right one. Therefore
every coset in an abelian group is two-sided. Cosets have a number of important
properties.

Theorem 4.3. Let H be aproper subgroup ofa group G. Then:

1) everyelement g eG belongs to some left-cosetofH in G;

2) two elements a,b e G Dbelong to the same left coset iffa~l-b e H ;

3) any two left cosets of H in G are either identical or disjoint;

4) for every aeG orders ofsets aH and H are the same;

5) G s adisjoint union ofleft (right) cosets of H ;

6) all left cosets and all right cosets of H in G have the same order.

Definition 4.3. For a subgroup H of a group G the index of H , denoted
\G:H\, is the number of left cosets of H in G (which is equal to the number of
right cosets of H in G).

With properties of cosets the following crucial theorem in the theory of finite
groups can be proved:

Theorem 4.4 (Lagrange’s Theorem). The order ofa finite group is divided by
the order ofany its subgroup.

Corollary 7. In a finite group the index of any subgroup is the quotient upon
division of the group order by the subgroup order.

Corollary 2. Groups of prime order are cyclic and do not contain proper
subgroups.

Corollary 3. If G is a finite group of n elements, then for every aeG it holds
an- e. In other words the order of an element of a finite group divides the order of
the group.

Definition 4.4. A subgroup H ofa group G is called a normal subgroup if for
every ae G itholds aH =Ha.

Clearly, every subgroup of index 2 is a normal subgroup.

Problems for Classroom
Problem 4.1. Give examples of a subgroup in the group (Z,+). Determine

whether the following set is a subgroup:
a) all negative numbers; all positive numbers;
b) all even numbers; all odd numbers;
c) set of integers from 0 to 10; from -5 to 5;
d) all integers divisible by 2009;
e) all integers with the remainder of 1999 when divided by 2009.
Problem 4.2. Give an example of subgroups a) in the group (C,+) of all

complex numbers with addition operation; b) in the group C*.

30



Problem 4.3. Give examples of subgroups in the group GL,,{R) of all
nonsingular real square matrices of a given order n>2. Find the center of this group.

Problem 4.4. How many subgroups are there in an arbitrary group? What is the
minimal subgroup containing a given group element? What other elements of the
group should it contain?

Problem 4.5. Determine whether the following set is a subgroup: a) the union
of subgroups; b) the relative complement of a subgroup; c) the symmetric difference
of two subgroups; d) the intersection of subgroups; e) the set of all k -th degrees of
all elements of an abelian group.

Problem 4.6. In every group there are cyclic subgroups (sometimes they
coincide with the group). Under what conditions does the group have noncyclic
subgroups? Give examples.

Problem 4.7. Show that the multiplicative group Z/8Z* is abelian, but not
cyclic, and Z /9Z8is cyclic.

Problem 4.8. Let G=MIx4(Z/2Z) (a set of all row matrices with four
coordinates from Z/2Z) be a group under the operation of coordinate-wise addition

modulo 2. How many elements are there in this group?
Let H be the following subset of elements ofthe group G :

<.(0 O\/O O)I,(l 01 1)', 20 10 1)',(1 11 O)ll,
_________________ V_____ o o e \vl _\vl
0 el €2 el W2

here 0 = 0, 1 = 1. Make sure that A is a subgroup, write down the coset table of H
in G.

Solution. Since each of the coordinates takes only two values (0 or 1), then G is
a group of order 16.

It has been already discussed, that the operation of coordinate-wise addition
modulo 2 is associative. If we add two elements from H the result does not lead
outside H , i.e.,, H is closed under addition. H contains the identity (it is the zero
vector). Every vector from H is inverse for itself. Thus, H satisfies all axioms of the
group definition. Hence H is a subgroup of G .

Write down the coset table of H in G :

Ne Knacc a+H a+0 a +ex a+e2 a+(ex+e2)
1 0+H =H (0000) (1011) (0101) (1110)
2 (1000) +H (1000) (0011) (1101) (0110)
3 (0100) +H (0100) (1111) (0001) (1010)
4 (0010) +H (0010) (1001) (0111) (1100)

Problem 4.9. List all elements of the multiplicative group (Z/36Z)*, compare
the number of elements in this group with ¢ (36). Determine whether this group is

cyclic. Write down the coset table (Z/362)* / <25 > ofthe cyclic subgroup <25 >
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in the group (Z/362)*.
Solution. G =(zZ/362)* ={1,5,7,11,13,17,19,23,25,29,31,35}. <7=12.

0 (36) = o|o(22 -32) = 12. Hence ’é| = §(36). G is cyclic if there exists an elemer.i
of order \G\, i.e., the cyclic group generated by an element coincides with the whole
group G. Let try to find such an element. At random we select 5 and write down the
cyclic group <5>,
<5>={5, 25, 53=17, 54=17-5=13, 55=13-5=29, 56=29-5=1} is a

subgroup of order 6. By Lagrange's Theorem all other elements of this subgroup have
orders that are divisors of 6.

<7>={7,72=13,73=13-7=19,74=19-7=25,75=25-7=31,76 =31-7 =1}
Is a subgroup of order 6. Hence, its elements 7, 19, 31, that do not belong to <5 >,
also have an order not exceeding 6.
<11>={I1,112=13,113=13 -11=35,114=11 -35 =25,115=25 -11=23,116=23 -11=1}
Is a subgroup of order 6. Hence, its elements 11, 23, 35, that do not belong to the

subgroups <7 > and <5 > also have an order not exceeding 6. Thus all 12 elements
of the group G have an order not exceeding 6. Therefore G cannot be a cyclic

roup.
o A =<25>={2513,1} is a subgroup of three elements. Therefore the coset
table (Z/36Z)* / <25 > should contain 12 :3 = 4 cosets. The subgroup H is a
coset. Here are the remaining three cosets: 5H = {525 =17, 513 = 29, 5},
7# ={7-25=31,7-13 =19,7}; NMH = {11-25 =23,11-13 = 35,11}.
Problem 4.10. Does the group (Z/36Z)* contain anon-cyclic subgroup?

Solution. Yes, it does. There are three elements of the second order in this
group: 17, 19, 35. These elements are inverse for themselves, because from the

condition a” =e we have a_}: a. Together with 1 these elements form a system
closed under multiplication modulo 36 and hence they form a subgroup - a non-
cyclic subgroup of four elements.

Self Instructional Problems for Laboratory Study Ne 4 «Subgroups»
Variant 1.

1. Make sure that vectors 0(00000), «(10101), £(10011), c(00110t form a
subgroup under addition in the group V5 of all five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3. List all elements of the multiplicative group of the ring: ai Z 17Z; b)
Z1322Z. Compare the number of elements in this group with <p(I7) and ~(32)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :
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a) (Z/172)*/<4>; b) (Z2/32Z2)*/<17>.
5. Does the group Z /32Z contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

work Ne 3, is normal in the group S9?

Variant 2.
1. Make sure that vectors 0(00000), a(10110), 3(11001), c(01111) form a
subgroup under addition in the group V5 of all five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table ofthe given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/19Z; b)
Z/30Z. Compare the number of elements in this group with cp(\9) and <p(30)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :
a) (Z/192)*/<7>; b)(Z/30Z)*/ <17 >.

5. Does the group (Z/302Z) * contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

Study Ne 3, is normal in the group S9?

Variant 3.
1. Make sure that vectors 0(00000), a (10110), 3(10101), ¢ (00011) form a
subgroup under addition in the group V5 of all five-dimensional vectors with
coordinates from Z/2Z.

2. Write down the coset table ofthe given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/13Z; b)
Z/34Z. Compare the number of elements in this group with <\13) and <"(34)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :
a) (Z2/132)*/<3>; b)(Z/34Z2)*/<19>.

5.Does the group (Z/34Z) * contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

Study Ne 3, is normal in the group 59?

Variant 4.
1. Make sure that vectors 0(00000), a (11000), 3(10110), ¢ (01110) form a
subgroup under addition in the group V5 of all five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.
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3. List all elements of the multiplicative group of the ring: a) Z/11Z; b)
Z128Z . Compare the number of elements in this group with ¢ (11) and @ (28)
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :

a) (Z/112)* /< 10>; b) (Z2/282)*/< 17 >.

5. Does the group (Z/28Z)* contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

Study Ne 3, is normal in the group S9?

Variant 5.
1. Write down all elements of the subgroup generated by vectors

a(11011), (11100),c (00111) in the additive group V5 of five-dimensional

vectors with coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/18Z; b)
Z/31Z. Compare the number of elements in this group with ¢(18) and ®(31)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z/312)* /1 <26 >; b) (Z2/182)* /<17 >.

5. Does the group (Z 18Z) * contain a non-cyclic subgroup?

6. Is the subgroup <f > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

Variant 6.
1. Write down all elements of the subgroup generated by vectors

a (11001), 6(10110), ¢ (01111) in the additive group V5 of five-dimensional
vectors with coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/29Z; b)
Z/16Z. Compare the number of elements in this group with ¢ (29) and o (16)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z2/292)*/1<12>; b) (Z/162)*/<7>.

5. Does the group (Z/16Z) * contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

Variant 7.
1 Write down all elements of the subgroup generated by vectc

a (11001), 6(10110), ¢ (01111) in the additive group V5 of five-dimensional
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vectors with coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/17Z; b)
Z126Z. Compare the number of elements in this group with ¢ (17) and ¢ (26)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z/172)* | <2 >, b) (Z/26Z2)* | <7 >.

5. Does the group (Z/262Z) * contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

Variant 8.
1 Write down all elements of the subgroup generated by vectors
a (11000), 3(10110), ¢ (01110) in the additive group V5 of five-dimensional
vectors with coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3. List all elements of the multiplicative group of the ring: a) Z/23Z; b)
Z|24Z. Compare the number of elements in this group with ¢ (23) and ¢ (24)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z1232)*1<2>; b) (Z2/24Z2)* | <17 >.

5.Does the group (Z/24Z) * contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group Sg?

Variant 9.
1 Write down all elements of the subgroup generated by vectors

a (11001), 3(10110), ¢ (01111) in the additive group V5 of five-dimensional
vectors with coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/23Z; b)
Z/21Z. Compare the number of elements in this group with ¢ (23) and ® (21)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (£/232)* | <3 >; b) (Z/212)* | <11>.
5. Does the group (Z/21Z) * contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

Study Ne 3, is normal in the group S9?
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Variant 10.
1. Write down all elements of the subgroup generated by vectors

£(10110), ¢ (01111) in the additive group V5 of five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table ofthe given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/31Z; b)
Z/20Z. Compare the number of elements in this group with cp(31) and ® (20)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z/312)* ]/ <2 >; b) (2/20Z2)*] <17 >.

5. Does the group (Z/202Z) * contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

Variant 11.
1. Write down all elements of the subgroup generated by vectors

a (11001), b (10110) in the additive group V5 of five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/14Z; b)
Z/37Z. Compare the number of elements in this group with ¢ (14) and ¢(37)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z2/14Z2)* | <11>; b) (Z2/37Z2)* ] <3>.

5. Does the group (Z/14Z) * contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation f from Problem 2, laboratory
Study Ne 3, is normal in the group £9?

Variant 12
1. Write down all elements of the subgroup generated by vectors
a (11001), ¢ (01111) in the additive group V5 of five-dimensional vectors with

coordinates from Z/2Z.
2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring: a) Z/T7Z; b)
Z125Z. Compare the number of elements in this group with ¢ (17) and ¢ (25)

correspondingly. Is this group cyclic under multiplication?
4. Write down the coset table :

a) (Z/17Z)*/ <10>; b) (Z/25Z2)* <7>.
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5.Does the group (Z/252Z) * contain a non-cyclic subgroup?
6. Is the subgroup </ > for the permutation / from Problem 2, laboratory

Study Ne 3, is normal in the group S9?

Variant 13.
1. Make sure that vectors 0(00000), a (00110), 6 (01001), c (01111) form a
subgroup under addition in the group V5 of all five-dimensional vectors with

coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.

3. List all elements of the multiplicative group of the ring: a) (Z/172)*; b)
(Z/27Z2)*. Compare the number of elements in this group with cp(17) and cp(27)
correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :

a) (Z/172)*1<10>; b) (2/272)*/ <10>.

5.Does the group (Z /27Z)* contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

_Variant 14.

1. Make sure that vectors 0(00000), a(l 1100), 6(00111), c(l 1011) form a
subgroup under addition in the group V5 of all five-dimensional vectors with
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.

3.List all elements of the multiplicative group of the ring:
a) (Z/132)*; b) (Z/22Z2)*. Compare the number of elements in this group with
cp(13) and cp(22) correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :

a) (Z/132)*/<10>; b) (Z/22Z)*/<7>.

5. Does the group (Z/22Z)* contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group SgP

Variant 15.

1. Make sure that vectors 0(00000), a(00111), 6(01001), c(01110) form a
subgroup under addition in the group V5 of all five-dimensional vectors with
coordinates from Z/2Z.

2. Write down the coset table of the given subgroup in V5.

3. List all elements of the multiplicative group of the ring:
a) (Z/152)*; b) (Z/292)*. Compare the number of elements in this group with
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®(15) and ¢ (29) correspondingly. Is this group cyclic under multiplication?

4. Write down the coset table :

a) (Z/152)* /1 <7>; b) (Z/292)* /< 10>.

5. Does the group (Z/15Z)* contain a non-cyclic subgroup?

6. Is the subgroup </ > for the permutation / from Problem 2, laboratory
Study Ne 3, is normal in the group S9?

Laboratory Study Ne 5 «Historical Cryptography»

Necessary Theoretical Data

The history of civilization shows that almost immediately after beginning of
written languages various sorts of systems for protection information against
unauthorized access were developed. Consider the most popular ones.

1. Caesar cipher (Caeser’s cipher, Caesar’s code, Caesar’s shift). Its essenc
Is that every plaintext letter (i.e., each letter in the encrypted message) is replaced by
a letter some fixed number of positions further in the alphabet. This cipher was used
by Julius Caesar in his business correspondence in the first century AD. Caesar

replaced the first letter of the Latin alphabet (A) with the fourth (D), the second
(B) - with the fifth (£), and the last one - with the third. In other words, the
replacement was performed in accordance with the following table (see Figure 5.1):

NOPQRS S T uV
QR ST UVw XY
Figure. 5.1

A BCDEFGHII1I J KLM w X Y Z
DEFGHI1TJ KLMNZOP z A B C

Example 5.1. The famous Caeser’s report to the Roman Senate describing his
recent victory looked as follows:

YHQL YLGLYLFL

With fairly serious efforts to decrypt we can verify that the correct text is "Yeni.
vidi, vici” that means “l came, | saw, | conquered”.

The Caesar cipher is referred to a class of ciphers called “simple substimiion
ciphers” or “substitution ciphers”. These are ciphers in which every letter of the
alphabet is replaced by a letter, number, symbol or any their combination.

2. Trithemius cipher. This encryption system was first published in 1518 in
treatise, written by religious abbot Trithemius (1462 - 1516). The Trithemius system
represents a further improvement of the Caesar encryption system and is based on the
idea of a motto. In this system the text of a motto (nowadays it is known as "key") is
signed with reiteration under an encrypted text, then columnwise summation of the
text and the motto letters is carried out. The obtained result is a ciphertext.

Example 5.2. Let encrypt the text «The sky is blue above Paris» with the motto
«Rose». As stated above, we need to write down two lines - a line of the text and a
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string with the motto with reiteration. At the top and at the bottom we add a row with
numbers of corresponding letters in the English alphabet. As a result we obtain the

following table (see Figure. 5.3).
20 8 5 19 11 25 9 19 2 12 21 5 1 2 15 22 5 16 1 18 9 19

T HE S KY I §BLUAADBU OVEWPARIS

R 1 S E R | S E R 1 S ERI S E R 1 S ERO

18 15 19 5 18 15 19 5 18 15 19 5 18 15 19 5 18 15 19 5 18 15
Figure. 5.3

To obtain a ciphertext we sum numbers in each column of the table. If the sum
is greater than 26 we subtract 26 from this sum. After these calculations we convert
the derived number to a letter. So in the first column we get a number
20+18-26 =12, i.e., the letter «L». We continue this procedure until we get the
following ciphertext:

LW X X NNBXT AN JSQH AW ETWAH

A french ambassador to Rome, Blaise de Vigenere (1523 - 1596), according to
his service dealt with the problem of mail secrecy, wrote a large “Treatise on ciphers”
(published in 1585). He made a practical improvement in the Trithemius
cryptosystem that allowed to carry out the procedure of encryption - decryption
almost automatically. In this system the role of the cipher machine is played by a
square table with the alphabet. Its first line is filled with successive letters of the
alphabet. The second line is the same alphabet, but shifted by one letter left - in this
case it starts with the letter B and ends with the letter A. The third line starts with the
letter C and ends with the letter B. And so on, up to 26 lines, inclusive. Now we
revert to Example 5.2. At the intersection of the column with the first letter T and the
row with the first letter R is the letter L - the first letter of the ciphertext. And so on.

In such form cryptosystems with mottoes were used for about 400 years as
absolutely reliable and undecryptable, espessially in military affairs. The fact that the
Trithemius system was successfully applied in the early twentieth century,
is confirmed, in particular, by certain pages of the immortal book "The Good Soldier
Svejk" by Jaroslav Hasek.

Practice of long usage of a cryptographic system pointed to the problem of
keys. Usage of the same key over a long period of time can bring enemy to some
regularity and subsequently cracking the cryptosystem. This problem has been
overcome in two ways. The idea to use long keys came first. Ideally the key length
coincides with the length of an encrypted text. Then, of course, the idea to change
keys frequently appeared. Frequent key changes arise problems how to generate and
to transfer a new key. The found solution was unexpected and brilliantly simple - a
book. Participants use identical copies of the same edition of a particular book. The
new key is reported by means of calling a page and a paragraph of the book. It is
unlikely that two numbers sent by mail or published in the advertising section of a
newspaper can give enemy meaningful information.
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ABCDEFGHI JKLMNOPQRs TUVWXY z
BCDEFGHI JKLMNOPQRSTUVwWXYZA
CDEFGHI JKLMNOPQRSTuvVwXYZAB
DEFGHI JKLMNOpPpQRSTuVWXYZABC

EFGHI JKLMNOPQRSTuVwXYZABCD
FGHI JKLMNOPQRSTnuVwXYzABCDE
GHI JKLMNOPQRSTunVwXYZABCDEF
HI JKLMNOPQRSTuVwWXYZABCDEFG
|l JKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTunVwXYZABCDEFGHI
KLMNOPQRSTnVWXYZABCDEFGHI ]
LMNOPQRSTuVwWwWXYZABCDEFGHI JK
MNOPQRSTuVwXYzABCDEFGHI JKL
NOPQRSTuvVwXYzABCDEFGHI JKLM
OPQRSTMVWXYZABCDEFGHI JKLMN
PQRSTuVwXYZABCDEFGHI1 JKLMNO
QRSTuVwXYzABCDEFGHI JKLMNOP
RSTnVwXYZABCDEFGHI JKLMNOPQ
STUVWXYZABCDEFGHI JKLMNOPQR
TnVwXYzABCDEFGHI JKLMNOPQRS
mvVvwXYZABCDEFGHI JKLMNOPQRST
VwXYzABCDEFGHI JKLMNOPQRSTHwu

wWXYZABCDEFGHI JKLMNOPQRSTUYV
XYZABCDEFGHI JKLMNOPQRSTUVwW
YZABCDEFGHI JKLMNOPQRSTuVwX
ZABCDEFGHI JKLMNOPQRSTUVWXY

3. Route cipher. There is a group of ciphers called “transposition ciphers”.
these ciphers positions held by units of plaintext (which are commonly characters or
groups of characters) are shifted according to a regular system. A “route cipher” is an
example of a transposition cipher. An encrypted message is typed in the rows of a
given \n x m] rectangular. A ciphertext is found if we write columns of the table.

The next example demonstrates a “router cipher”.

Example 5.3. The text consisting of 30 letters is typed in the rows of a 5x6
matrix or table (Figure. 5.4):
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w E W E R E
D1 S C OV
E R E D F L
E E A W AY
AT O N C E
Figure. 5.4

To obtain a ciphertext it is necessary to write down matrix columns in a string
starting with the first one:

WDEEA EIRET WSEAO ECDWNROFAC EVLYE

Surely, there are other possible ways to type a message in a given table and to
write down columns of the table.

We can increase complexity of encryptions discussed above if we use a motto.
Namely, have written a message in the table we can rearrange columns of the table in
some way.

Example 5.4. Let complicate the encrypted message from Example 5.3 by
applying the motto “Matrix”. According to the order of the motto’s letters in the
English alphabet we can assign the following numbers to them: 3,1,5,4,2,6. We write
down the columns of the table from Example 5.3 in this order:

EIRET ROFAC WDEEA ECDWN WSEAO EVLYE

4. Cardan grille. Perhaps the most complicated variant of “router transpositior
is a Cardano grill. Gerolamo Cardano (1501 - 1576) is a famous Italian
mathematician, physician, mechanic, philosopher. As a mathematician he is
renowned for being found formulas for roots of cubic equations. And as a mechanic
he became famous primarily for the fact that his ideas are implemented in each car
device called “cardan shaft” or “drive shaft”. Finally, Cardano scored in
cryptography.

Gerolamo Cardano invented the following encryption method. To send a secret
message containing 4mk letters one make a square paper stencil containing 2m x 2k
squares. In the stencil one cut out mk squares so that when the stencil is applied to a
blank sheet of paper in four possible ways its cuts completely cover the entire area of
the sheet. The order of these four possible positions are determined in advance.
Letters of a message are sequentially typed in the cuts of a stencil - the most natural
variant - by rows, each row from left to right. The filled table is written sequentially
- each column in a line (Figure. 5.6).
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Example 5.7. Read the message encrypted with the stencil and the procedure
described above:
EGSC IINS RINB LASO

Problems for Classroom
Problem 5.1. Read the text encrypted by the Caesar cipher:
a) Pb prwkhu kdv d yhub glfh fdu;
b) Uhdg wkh whaw hgfubswhg eb wkh Fdhvdu flskhu.
Problem 5.2. Decrypt the ciphertext created with the Vigenere table:
a) ehx pw ietzkns a zyign vit;
b) pog'a hdigs cnp dkpzg am bje eafl xuxm.
Problem 5.3. Decrypt the message encrypted by a route cipher method:
a) ivyls micoe dnanv rgree imaar;
b) gkary antyg uehvo swveo smerd.
Problem 5.4. Decrypt the message encrypted with the Cardano grille:
wloteseea seielaifh hlasecces tomhoflsd

X
X
X X
X
X X

Self Instructional Problems for Laboratory Study Ne 5 «Historical
Cryptography»
1. Read the text encrypted by the Caesar cipher.
2. Decrypt the message encrypted by a route cipher method.
3. Decrypt the message with the motto “mathematical
4. Decrypt the message encrypted with a Cardano grille.

Variant 1
1. Grulv orrnhg durxqg wkh ehgurrp iru wkh odvw wiph wr pdnh fhuwdiq
wkdw wkh sohdvdqw urrp, jurzg ghdu ryhu wkh sdvw wkluwb bhduv, zdv ghdw dqg
wigb
2. Hdhli eaelt slsfe olmrr Itaus
3. po rvy mgkmg od dbzesrxm?
4. wakyremt ycwfinye plotmsvir eheihydew
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Variant 2.
1 WKhu vnlg udq wkh jdpxw iurp d wudgvoxfthgw zklwh wr d ghhs urvh,
ghshqglqj rg zkhwkhu vkh zdv dgjub, wluhg, ru haflwhg
2. Lyonr onmdo veena ewsed lhaws
3. ut bz e tizta ezttyxmigqpg detk
4. minieetks lielkosnd sadrlktce chltaseaa

Variant 3.
1. Zlwk wkh dgyhgw ri frpsxwhuv, wkh viwxdwlrg kdg fkdgjhg gudpdwlfdoob,
dgg hqgruprxv dprxqwv ri prghb frxog eh wudqgvihuuhg lgvwdgwdghrxvob
2. Asnpc ptwph erari dison eaaag
3. ut bz agle eqrfh lliunz
4. httasyydi teroderan weeyvfsnd ehwarotwy

X

Variant 4.
1. Dv vkh vhw wkh vfrufkhg phdw dqgg ehdqv Iq iurqw ri kip, vkh irujrw khu
fduhixoob uhkhduvhg vshhfk
2. sroto oeohr rrdew csida etnoy
3. ut bz aqgle eqrfh lliunz
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4. seoipasse msrkolyoa ytenttptm idsolergs

1. Uhjxodu fxvwrphuv zhuh Iwxhg ghsrviw volsv zlwk d shuvrqdo pdjghwlchg
frgh dw wkh erwwrp

2. iteic lomty iryec kiwbl edhie

3. ihr hvg wx lgizg mome?

4. uheueitiy hheosrdee eseabntnm toscntcbm

X
X
X
X
X X X X
X
Variant 7.

1. Lg wkh rog prylhv wkh exwohu dozdbv fdph wr wkh uhvfxh zlwk d wudb ri
gulgnv.

2. tyime hssoc ittsu sehtr smese

3. yy zyeznr'a paye bz oxompklpa

4.smbanoegh oohinlwhs ytahwimef edskestil
X X X

Variant 8.
1. Wkhuhduhpdgblqwhuhvwlgjdqggreohsurihvvirgv
2. saiih hlkso elenu ryses elhwe
3. u lbzxgn mw napy zhkm eomtypar
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4. ermnteeou teeheects reiaarida hxsvbnrft

1. LzdgwwrvdbwkdwLfdqqrwlpdjlghpbolihziwkrxwwudyhoolq]

2. dowai ouwsn nkhve tnoir yowge
3. sanzw ial otemt fhxtefivioitu
4. eaaeealae ssdalnsto wxuthfeep ahehshdio

Variant 10.
1. Brxwklvdyhublpsruwdgwshulrglgwkholihripdq
2. leleh issse tntas taatk lirty
3. pog'a hdigs cnp dkpzq!
4. tnyopiurt epeoducoy sdtmahess hoorsteda

Variant 11.
1. Wkhfdslwdoriwkh XV DIvwkhflwbriZdvklgjwrq
2. from now you are the chosen one

3. u dhu'x wnhe yha il cmsegmte!
4.eseooohlw amtrbpyiw hxmwteano hanaruisg
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Variant 12
1. Lzrxogolnhwrwhoobrxderxwvkrsslgj
2. histe otiot wpbhh iolaa ssevt

3. u wtz junxl hod silipigo
4. satousose hyodoapsi idmssbsbl itatitoao

X

X X

Variant 13
1. QhzBmnQhzBrundwwudfwshrsohiurpdooryhu
2. foaee rwrcn oyeho moton nuhse

3. u lbzxgn mw napy zhkm eomtypar
4. aiammaltf heaedoonn ncrbjueoc vneeryrae

Variant 14.
1. WkhHgjolvkshrsoholnhdglpdovyhubpxfk
2. hvass eechd ymkou gemrd ibyte

3. ihta ede rww daign mz blckr?
4. berttwrwu yagdseito morbueagh aeyuihiey
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Variant 15.
1. Pdgbuholjlrqvhalvwrgrxusodghw
2. ohert bereu epoal yofth twgku
3. ehx pw ietzkns a zyign aiv
4. iensuyair Ikwmasdns ieiianyum whtendnme

Laboratory Study Ne 6 «Modern Cryptosystems»

Necessary Theoretical Data

Modem cryptography has the exact date of birth - 1976 when W. Diffie and M.
Heilman published their article with the new fundamental revolutionary ideas.
According to one of these ideas a good cryptosystem should be based on a one-way
function. The characteristic feature of a one-way one-one function is that values of
this function can be calculated easily but values of the inverse function is practically
not computable without knowledge of additional information - keys. They suggested
a candidate for the role of a one-way function - a function of two prime arguments
f {p,q)=p-q for large p and g. Soon, in 1977, U.S. researchers R. Rivest, A.

Shamir, and L. Adleman suggested a system of data encryption based on a one-way
function. The proposed encryption system now is called the RSA cryptosystem.

1. RSA cryptosystem. The essence of the RSA cryptosystem is simple. First
all encrypted information is converted into digital format. For example, in the origin
letters of the Latin alphabet were replaced by two-digits numbers: "a" = 01, «b» = 02,
..., etc. In any case, transmitted information is a natural number c. Then one choose
two large prime numbers p and q, such that they do not divide ¢ and n=p my >c. It

Is obvious that cp(n) = (p-\)*qg-\). At last one should choose a natural number e
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such that 0 <e<n and GCD (e,(p(ri)) = L

The encrypted message (or ciphertext) is the number m =ce(mo&ri). The pair
of natural numbers (e, n) is the public key ofthe RSA cryptosystem.

Example 6.1. Let p =3, ¥=11. Then n=pq =33, ¢p(n) =2-10 = 20. Let
take e = 7. It is easy to see that then d = 3. Let «S» = 19 be a message to transmit.
Then the ciphertext is the number m =ce(modri) = 197(mod33). This value we

compute in several steps. 192 = 361 = 31(mod33).

194 =312(mod33) = 961 =4(mod33). Then 197 =4-31-19(mod33) = 13(mod33).
Thus m = 13. An addressee is sent the message (m, e, n) = (13, 7, 33).
The addressee receives the message (n,e,m). He like everybody knows n and

e. He also need to know the secret key - such natural d <n that
em =1(mod (p(«))). Hence em =d¢(n)mk +1 for some integer k. Then by

Euler’s Theorem md=cal=c- (ceY () =c-\ =c (mod«). Thus in order to find c it is

enough to find the remainder of m" upon division by n.
It is possible to crack the RSA cryptotext only when solution d of the

congruence ex =1(mod<p(n)) is found. To do this an attacker need to know ¢ («).
The properties of the function ¢ (n) implies that the only reliable way to calculate
(p{r) is to factor n. But the problem of factorization is very labor-consuming. It is a

base for the security of the RSA cryptosystem.
Example 6.2. Decrypt the RSA cryptotext (m, e, n) = (13, 7, 33).

Solution. Here d =3. Therefore the decryption of the message is done by the
rule:
¢ =md(mod n) = 133(mod 33) = 132 «13(mod 33) s 4 «13(mod 33) = 52(mod 33) = 19.
The true message is defined completely and correctly.

2. Chinese Remainder Theorem (CRT). The Chinese Remainder Theort

(CRT) is formulated in the following way.
Theorem 6.1. Let m=mxmm, m.. mn be the decomposition ofa natural number

m into a product ofpainvise coprime factors. Let bl,b2,...,on be arbitrary fixed
X =bx(mod m{),

integers. Then the system ofcongruences <  ........ always has a solution
X = bn(mod mn)

and all solutions ofthis system are congruent modulo m.

Definition 6.1. In the conditions of Theorem 6.1 every integer x has n
remainders 6: upon division by every divisor of m. A set {bx, b2, b n) is
called a CRT representation of x modulo m.

The CRT-theorem states that there are infinitely many integers x with the same set
(bx, b2, ..., bn) of remainders upon division by integers m But all of them are

congruent modulo m, i.e, the distance between them is a multiple of m:

48



X =x+mqg for a suitable integer g. In particular it implies that the ring Z/mZ

contains a unique number x with a given set (bx, b2,..., bn) . Thus, there is

Corollary 1. The CRT-theorem establishes one-to-one correspondence between
the integers on the interval from zero up to m —1 inclusive and all possible sets of

numbers (bu b2, ..., bn) for integer bt on the interval from zero up to mi-1
inclusive: x <» (bb b2, ...,bn).
From the properties of relatively prime numbers and corollary 1 we obtain
Corollary 2. Under the conditions of Corollary 1 a class & is invertible in the
ring ZImZ iff every coordinate bt from the set (bx, b2, ...,bn) corresponding to X
generates an invertible class in Z / nijZ.

The correspondence assigned by Corollary 1 preserves arithmetic operations on
numbers due to the properties of congruences.

Corollary 3. If x <>(by, b2,...,bn), y (cpc2 c n) then
(x% jy)mod m <-» ((by £+ c1)mod mx, (b2 £c2)mod (bn £c,,)mod mn);
(x-y)modm -c{)wsAmi, (b2 c2)modw?2, ...,(bn-c,,)modm,,);

(X ey ~X) mexi m <> ((Z] *q -1) mod mx (b2 ec2 ¥ mod m2,..., (bn «c~x1) mod mn)
for an invertible element y e Z / mZ.
Further the set of all invertible classes g inthe ring Z/mZ we will denote by

ZImz* or U(m). From Euler’s Theorem g~t)=\ for every geU(m) and
Corollary 2 we obtain

Corollary 4. Let x be the least common multiple of numbers q(rti!),
cp(m2),..., p (»0 for w,T2.., /T from Theorem 6.1. Then the equality g T=1 holds
for every element g gU(m) .

According to Corollary 3 of Theorem 6.1 arithmetic operations modulo m on
numbers can be replaced by the same operations but on their CRT representations.
At first glance such transition seems to be cumbersome. But it brings significant gain
in number of operations for numbers which are clearly beyond capacity used in
computers now. For example, if m is factorized into a product of two coprime factors
then multiplication of their CRT representations gives approximately a twofold gain
in number of operations and hence a twofold gain in time.

Even greater gain (three-fold and even fourfold) is obtained when numbers are
raised to a power. Corollary 4 of Theorem 6.1 is applied to solve such problems.

Example 6.3. Let find 2317(mod35).

Solution. Traditional method

232 =529 = 3515+ 4 = 4(mod 35);

234 = 16(mod35);

238 = 256(mod 35) = (35 W +1 I)(mod 35) & 1I(mod 35);
2316 = 121(mod35) ee16(mod35).
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Then 2317 = 2316 -23 = 16 «23(mod 35) = 18(mod 35).

Let try to solve the same problem through CRT representation. Since 35 = 5-7
and 23 = 3(mod 5); 23 = 2(mod 7), then the CRT representation of 23 is the pair

(3, 2). Here ¢ (5) =4, o (7) = 6. Therefore the least common multiple is r = 12.
Consequently
317 = 35(mod 5) = 3(mod 5); 217 = 25(mod 7) = 4(mod 7).

Thus, the CRT representation of 23]7(mod35) is the pair which obviously

represents the number 18.
If n=2,m =p and m2=q are prime numbers then to recover an element

xe Z/mZ by its CRT representation x <» (a, b) the following Gamer’s formulae
are used: X=(((b-a)(p~Imodg))modq)p +a or

x=(((a- b){g~Imodp))modp)q +h.

Example 6.4. For the number 19 the pair (8,6) is the CRT representation
modulo 143=11-13. Hence 19 is a solution of the system of congruences
(x =8(modl 2);
|x =6(modI3).

Solution. Compute 13 1(modll) and 11-1(mod 13). Clearly, 13(modll) = 2;

2-6 = 12 = (mod 11), therefore 13-1(mod 11) = 6. We find Il_1(modIl3) by the
extended Euclidian algorithm for GCD(11,13)=1: 13=11-1+2; 11=2-5+1
From here by down-sweep step we obtain the equality
1=11-1+2-(-5) = 11-1+(13-1 + 11- (-1))(-5) = 13 ¢(-5) + 11-6.
Hence Il _1(modI3)=6. By the first Gamer’s formula we have
X =((6-8)6 mod 13)11 + 8 = (-12(mod 13))11+8=11+8=19. By the second
Gamer’s formula we obtain x = ((8- 6) 6modi 1) 13+ 6 = 13+ 6 = 19.

Surely if one works with the real RSA cryptosystems, then the actual
calculations are done by the Chinese Remainder Theorem.

3. Rabin cryptosystem. This cryptosystem was the result of rethinking of t
RSA cryptosystem. M.Rabin became interested in the problem of key choice in the
RSA cryptosystem where e is always coprime with ¢ (n) and in particular is always
odd. And what happens if we take an even el And if we take the simplest case
e=2? As a result of detailed examination unexpectedly appeared the Rabin
cryptosystem considered here.

Let p and q be two distinct prime numbers and N = pq. We fix a number

B, 0<B <N. The pair {N, B} is the public key of the Rabin cryptosystem. A

transmitted message ¢ is considered as an element of the ring Z/NZ and is
encrypted by the formula: m=c(c +5)(mod7V). Clearly this encryption method is
implemented much faster than in the RSA cryptosystem. So, the Rabin cryptotext
represents three numbers (N, B, m), where the latter is the ciphertext and the first two
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are public keys. In fact, the message c is one of the roots of the quadratic equation
x2+Bx-m =0 inthering Z/NZ. Inthisring 2 is an invertible element. Therefore we

can use the standard formula x = II-:----_hm---gn(modjV) to solve the quadratic

equation.

The major disadvantage of the Rabin cryptosystem is that there are four roots of
every square inthe ring Z / NZ.

Example 6.5. Suppose N =37 =21. Lettake B =5 and let the letter 5=19 be
the transmitted information. The ciphertext IS
m =c(c +B)(mo&N) = 19(19 + 5)(mod21) = 15. An addressee is sent three numbers
(N, B, m)=(21,5,15).

The addressee computes the discriminant  of the quadratic equation:

R2

D :-4---bm =25/4 + 15=(25-16 + 15)(mod21) =16. This discriminant has the

following CRT representation modulo 21: 16 <->(1,2). In Z/3Z there are two
square roots of 1: 1 and 2. In Z/7Z there are also two square roots of 2: 3 and 4.
Therefore in Z/21Z square roots of 16 have 4 different CRT representations: (1, 3);
(1, 4); (2, 3); (2,4). It means that in Z/21Z there are 4 different roots of 16. Let find
them by the first Gamer’s formula. 3_1(mod 7) = 5. Therefore

dx=((3-1)5)mod 7)3 + 1= 10; d2=((4-1)5)mod 7)3 +1 = 4;

d3=((3-2)5)mod7)3+2=17; d4=((4-2)5)mod7)3+2 =11

In Z /21Z" 2 1=11. Therefore in Z/21Z the quadratic equation has 4
roots: XX=4-5-11 = 12(mod 21); x2 = 10 —55 = 18(mod 21);
x3 =11 —55 = 19(mod 21); x4 =17 - 55 = 4(mod 21). The authors of the problem

know which answer is correct, but how to inform the addressee about it is an

additional problem for the sender.
4. ElGamal cryptosystem appeared as a reaction on excessive complexity o
the RSA cryptosystem. Its security is based on the other problem - the problem of

discrete logarithm: to solve the equation ax =b inthe ring Z/pZ with prime p
one need to look sequentially through degrees a until the desired residue class b is
obtained. The problem is to develop the other not enumerative method to determine
the degree of x in this equation.

The base of the EIGamal cryptosystem is a large prime number P. For real, not
academic cryptosystems it should contain from 150 to 300 decimal digits. It means

that P lies in the range from 2512 to 21024. It is known that the residue class ring
ZIPZ is a field because all its nonzero residue classes are invertible under

multiplication. Moreover it is known that the multiplicative group Z1 PZ* of this
field has order P - 1 and is cyclic. It is also assumed that there is another large prime
number Q* 2i@) among divisors of P - 1. Let g be a generator of this multiplicative

group. It is not very easy to find this generator. But this search is a preliminary task.
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Developers of the cryptosystem face this problem during cryptosystem’s
construction. The parameters P and g are public keys of the system.

Any natural number x can be a secret key of the cryptosystem. It is known to
both a sender and an addressee. The value h = g' (mod P) is the third public key of

the cryptosystem. Any natural number c interpreted as a nonzero element of the field
Z!PZ is an informational message in this cryptosystem. To send a message ¢ or
multiple messages during short period of time the sender generates a session key k.
The addressee does not know it. To encrypt a message ¢ one need to multip>. it by
K =hk(modP) in the field Z/P Z. Thus the encrypted message is m-cK< moc?i.

The addressee is send a message of two numbers (m, Ok), where Ok=g (mod/31lis

a public session key.
The addressee knows three public keys (P, g, h). He also knows the secret key

X. The addressee computes the wvalue (3*(modP). Note, that

Osk(mod P ) - g kk(mod P) =hk(mod P) = K. It remains to find K~I in the field
Z/PZ. This is the same problem as finding d in the RSA cryptosystem. After this
the addressee can find the true message by the formula: ¢ =m- K '(mod/3.

Example 6.6. Let P = 23. Direct verification shows that g =5 can be taken as a
generator in Z /23Z*. Let x=7. Then

h =5?(mod 23) =52 ¢52 «52 «5(mod 23) = 2 «2 2 «5(mo0d23) =
=40 (mod 23) = 17 (mod 23).
So, h=17. Let take k = 3. Then
K =hk(mod P) = 173(mod 23) = 14 (mod 23).

Osk ~ gk(mod P) =5J(mod 23) = 10(mod 23). Let ¢ =20 be a message to encrypt
Then w=c*(modi9 =20-14(mod23) =4(mod23). A couple of numbers
(m,0%) =(4,10) is sent to an addressee. The values (P, g, h, x) =(23,5,1". 7)
should be known to him in advance. The addressee  computes
K =0*k(mod P) = 107(mod 23) = 14. It is easy to see that Al-1(mod 23) = 5. Then
c-m K~1(modP) =4-5(mod23) = 20 - the letter «t».

Problems for Classroom
Problem 6.1. Use RSA to encrypt the message ¢ = 156.
Solution. Choose n =209 =1119,p =11, =19 such that 156<20"? ar.c

GCD(156, 209) = 1. Here c¢p(209) = <p(Il)ecp(19) = 10+ 18 = 180. Choose ="
such that GCD(7,180) = 1. Then the ciphertext is m=ce=156 (modi']c
e=710=1112=22+2+1=4+2+1; 1567=1564-156: -156 <ixxi209);
1562 =24336 =92 (m0d209); 1564=922=8464 =104 (mo0d209):
1567 =156-92-104 = 1492608 =139 (mod 209).
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The pair (7, 209) is the public key. The message to send is (n,e,m) =(209,7,139).

Problem 6.2. Use the Chinese Remainder Theorem to calculate
13918 (mod 209).

Solution. It is easy to see that 139 <> (7, 6) modulo 209 = 11+19. By Fermat’s
Little Theorem we have

710=1(mod 11); 618= 1(mod 19).

Therefore 718 = 73(mod\\) =2 (mod 11). 618 = 613(mod 19) s 4 (mod 19).

Thus, 13910 <>(2,4). 11-1(mod19)=7. By Garner’s formula we obtain

13918(mod 209) = ((4 - 2)7 mod 19)11 + 2 = 156.

Problem 6.3. Decrypt the RSA cryptotext (n,e,m) = (209, 7,139).

Solution. 1) we factor n =209 : 209 =p-q =1119;

2) we compute @(209) —{p —1){g—1) = 1018 = 180;

3) we find the secret key d by the extended Euclidian algorithm:

180 =25-7+5; 7=1-5+2; 5=2-2 +1.
Therefore
1=5+(-2)-2=5+(-2) o(7-1 ¢5) =5+ (-2) o7+ 25=(-2) o7+ 35=

=(-2)-7 +3(180 - 25-7) = 3-180+ (-77)-7.

Hence e~l = —77 = 180 —77 = 103. Thuls, d- 103;
4) we find m (mod/?) =c, i.e., 139 J(mod 209). From the solution of problem

6.2 it follows: the sent message is ¢ = 156.

Problem 6.4. Use RSA and the Chinese Remainder Theorem to encrypt the
message «as».

Solution is not unique. Naturally, we perform the transition from the word to a
number as the authors of RSA did: a<->01, s<-*19. Therefore as <->119. So the

message is ¢=119. We choose prime numbers p and g so that their product
n=pq is greaterthan ¢c-119 and is coprime to it. Let take p =13 and <=19. Then
n-pq-241 satisfies the required conditions. Let take e=A\. It is necessary to
calculate m=cemod(«) =1194(mod247). We find the CRT-representation
c=119<->(2,5). (p{n)=12-18 =216. LCM(12,18)=36. Hence by Corollary 4 for
every a e (Z/247Z)* we have a3= 1. Therefore 1194 = 1193%6=1195(mo0d247).

Let find the fifth degrees ofthe CRT representation of c.
255=6(modl3).

55 =25 ¢25¢5=6¢65(modl9) = 36 «5(modl9) = 17 «5(modl9) =9(modI9).
Thus, (6,9). To restore m we use the following Garner’s formulae:
m - ((&- a)(p~xmod<7))modg)p + a. Here p~Imod# = 13-1modl9 =3modI9 = 3.
Then m- (((9- 6)3)modI9)13 + 6=(9modl9)13 + 6=9-13 +2=123. So, by the
RSA scheme we have the message (n,e,m) = (247,41,123).
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Problem 6.5. Decrypt the message (n,e,m) =(247,41,123) using the Chinese

Remainder Theorem.
Solution. The basis of strength of the RSA cryptosystem (the complexity of
factorization) for «=247can be easily overcome: 247=13-19. Then

<EX247)=12-18=216=23-33 and GCD(cp(13),<£>(19)) = 6. It is necessary to find
d=e~x=4T1 in the ring Z/216Z. <™?216)=<\23-<p(33)=4-18=72 and
LCM("?(23),<M(33)) =36. Hence for every <3e(Z/216Z)° we have aj6=1, In
particular 413%=1. Therefore in the ring Z/216Z we have 4 1=4T\ Let compute
this value.
412=1681 = 169(mod216); 414=1692=49(mo0d216);
418=492s 25(mo0d216); 416=252=193(mod216); 412s 1932=97(mod216).

Hence 415=4132¢41241 =97 «169 *41(mod216) = 137(mod216). So in the ring
Z/216Zwehave 4TI *=137.

To decrypt the message we should calculate ¢ =mrf(mod«) =12313{mod247).
While solving the previous problem we noted that for every <ie (Z/247Z)* the
equality a®= 1 holds. Therefore 1231¥=1233&0 =123 mod247). Let turn to the
CRT representation: 12320<-N62,92). By the little Fermat’s theorem we have
612=I(modl3) and 98=I(modl9). Therefore
620 =65modi3) =6262+6(modI3) =10-10-6(modI3) = 2(modl3);
92=9'"'(modi9). Since 92=5(modl9), 94=52(modl9)=6(modl9), then
9N =94224=625°9(modl9) =\1 w7(modl9) =5(modl9).

Thus c¢<->(2,5). To restore ¢ by its CRT representation we use Garner’s
formula

c={{{a- b)(g~Imodp))modp)g +b.
Here
g~l(modp) =19 I(modI3) = 6"(modI3) - 1I(modI3).
Then ¢=(((2-5)I1)modI3)19 + 5= (-33modI3)19 + 5=119. Consequently the sent
message is “as”. The problem is completely solved.

Problem 6.6. Use the Rabin cryptosystem to encrypt the message “be”.

Solution. Standard transition from the word into digital form proposed by R.
Rivest, A. Shamir, and L. Adleman gives the number c¢=205. We choose
W=19-29 =551, B - 43. Then the encrypted message is

m =c(c + £)(mod7V) = 205(205 + 43)(mod551) = 148.

Problem 6.7. Find all square roots of 237 in the ring Z /551Z.

Solution. The number 237 <>(9,5) modulo 551 = 19 +29. In the field Z/19Z
there exist two square roots of 9: 3 and 19-3 = 16. To find square roots of 5 in the
field Z/29Z we use the enumerative technique. Namely, we look through elements
of the set Z/29Z until we find an element aeZ/29Z such that a2mod29=5. It
is easy to see that 112mod29 =5. Therefore there exist two square roots of 5: 11 and
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29 - 11 = 18. Hence in the ring Z/551Z one can extract four square roots of 237.
Let denote them by dxd2d3 d4 These numbers have the following CRT
representations: J, =(3,11); d2=(16,11); d}=(3,18); ¢4=(16,18). We can find the
roots by the first Gamer’s formula

x = (((b- a)(p~Imodq))modq)p +a.

In this case p~{(modqg) =19 1(mod29). Let find this value by the extended
Euclidian algorithm. 29=19-1+10; 19=10-1+9; 10=9-1+1  Hence
1=10+9-(-1) =10+ (-1) *«(19+10 ¢(-1)) =102 +19 ¢(-1) = (29 +19 ¢(-1)) «2+19 ¢(-1) =
=292 +19 ¢(-3). From this Bezout’s identity it follows that in the ring
Z]29Zthe equality 191=29-3 =26 holds. Now we can easily obtain the desired
roots:
dx=((11- 3)26(mo0d29)) 19+ 3=5+19+ 3=98G;
d2=((11- 16)26(mod29))-19 + 16 = 15-19 + 16 = 301,
d3=((18- 3)26(mo0d29)) -19 + 3=15-19 + 3= 250;
dA= ((18 - 16)26(mod29)) «19+16 =23 19 +16 = 453.
Problem 6.8. Decrypt a two-letters message from the Rabin cryptotext:
(TV, B, m) =(551,43,148).
Solution. According to the theory the desired message c is one of the roots of
the quadratic equation x2+Bx- m=0 in the ring Z/NZ. In this case we should
solve the equation x2+43x-148=0 in the ring Z/551Z. It can be rewritten in

another form: x2+ 43x + 403 = 0. The roots of the equation we find by the standard
formula: x = f- 43+ niaz2- 4-a03 (mod551) = (-43 +ni237 (mod551). Taking

Into account the results of the previous problem we obtain four variants of the
98-43 55 55+551 _301-43_ 258 _

message: C= ---——-=—=-———--—-=3083; C = -mmmmmmmm= - =129;
1 2 2 2 2 2 2
N
C, = 250243— --2-;-)-7 = 207;551— 379; c,4— -fl-§-3243 = 205. The first message is cc’

the second, and the third does not have verbal decryption, and the fourth is decrypted
as “be” and is the desired message.
Problem 6.9. Use the EIGamal cryptosystem to encrypt the message “be”.
Solution, ¢ =205. Choose P =509. Then we can take g =2. Let x =400. Then

h =g x(modP) = 240(mod509) = 2256A2816(m0d509); here
24 =16; 28=256; 216=2562s 384(mod509);
23 = 3842(mod 509) = 355; 2e4 = 3552(mod 509) = 302,
218's 3022(mod 509) = 93; 22% = 932(mod 509) s 505.

Hence h=241mod509) = 505 «93 <384 (m0d509) = 181. Let k = 279. Then
K = hk(modP) = 1812Zmod509) = 181Z32" 42H(mod509)
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Here
1812 = 185(mod509); 1814 = 1852(mod509) = 122;

181s = 1222(mod509) = 123; 1816 = 1232(mod509) = 368;
1812 = 3562(mod509) = 30; 18164 = 302(mod509) = 391;
18118 = 3912(mod509) = 181; 1817 = 1812(mod509) = 185.

Hence,
K =181Z3361424(mod509) = 185 368 «122 185 «181(mod509) s 429.

At last we obtain the encrypted message:
m =cK{modP) =205 «429(mod509) = 397.

In addition to the encrypted message one compute the public session key
Osk =~(mod P) =2279(mod 509) = 2236+16+4+2+1 (mod 509). Taking into account
the above calculations we have Osk =375. Thus, an addressee is sent the message:

(P, g, Km, O =(509,2,181,397,375).

Problem 6.10. Decrypt the ElGamal cryptotext
(P, g, hym, Osk) =(509,2,181,397,375) if the addressee knows the secret key
X = 400.

Solution. The addressee computes K =0Ogk(mod P) =37540(mod 509) = 429.
Then using the extended Euclidian algorithm he calculates
N “(modiH - 429"1(mod509) = 439. Then

c-m mK~x(modid =397 «439(mo0d509)-205-the word “be”.

Problem 6.11. In the role of an unauthorized user not knowing the secret key x
try to «hack» - decrypt - the message (P, g, h, m, O = (509, 2,340, 233,375).

Solution. We construct a fragment of the cyclic group

<g>=<2>={2,22=4,.}
until we obtain the equality 2X =340 and find x. Then we repeat the calculations
carried out in the solution ofthe previous problem.

Self Instructional Problems for Laboratory Study Ne 6 «Modern
Cryptosystems»
1-2. Decrypt an RSA cryptotext (m, e, n).
3-4. Decrypt aRabin cryptotext (n, B, m).
5-6. Decrypt an EIGamal cryptotext (P, g, h, x, m, Osk).

Variant 1.
1 (899,3,101671). 2. (102020525,1,102030101).
3.(150419,15,90244). 4. (205916939,666,39843864).
5.(47,11,19,13,42,18). 6. (17,6,14,7,13,3).

Variant 2.
1. (201505,1,202451). 2. (1015081425,1,1015123177).
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3.(155357,1001,9700). 4. (319372663,1024866,234853376).
5.(19,10,7,12,5,17). 6. (37,13,25,14,34,24).

Variant 3.
1. (10305,1,10349). 2. (205121225,1,205278781).
3. (101617,49,24873). 4. (1614612973,260740,455160832).
5. (43,18,40,8,19,13). 6. (29,8,23,16,3,15).

Variant 4.
. (40169,3,82933). 2. (112090305,1,112100657).
. (72329,252,23494). 4. (201043727,987654,40098000).
. (61,10,58,12,38,22). 6. (59,6,40,7,26,51).

g1 W =

Variant 5.
(17243,3,20737). 2. (205011419,1,205145103).
(51959,26,27841). 4. (1003621907,1485,149729920).
5. (47,5,10,19,43,43). 6. (67,11,58,3,20,56).

W

Variant 6.
1. (90305,1,91709). 2. (116161205,1,116259959).
3. (200623,573,145601). 4.(719026801,322180,521161600).
5. (67,12,33,4,61,39). 6.(11,8,3,6,10,6).

Variant 7.
1. (1650,3,12091). 2. (201040705,1,201043727).
3. (91709,398,36789). 4. (1828776151,14789255,876149760).
5 (17,6,8,6,8,15). 6. (17,10,5,7,6,12).

Variant 8.
1. (71515,1,72329). 2. (318050113,1,319372663).
3. (183641,26,91364). 4. (1106091083,5678,524381440).
5. (17,5,12,9,9,3). 6. (17,7,2,10,14,8).

Variant 9
1. (161523,1,162521). 2. (308051919,1,308880049).
(111101,448,73728). 4. (827010683,643345,369698560).
5. (23,19,11,5,22,15). 6.(23,18,1,11,18,13).

w

Variant 10.
1.(121523,1,123463). 2. (1801140705,1, 1828776151).
3. (101671,800,6187). 4. (722603899,621040,491328320).
5. (43,18,4,12,5,16). 6. (67,11,12,13,62,25).
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Variant 11.
(100123,1,101617). 2. (1601160518,1,1614612973).
(162521,1000,160525). 4. (1527869719,376660,1146343936).
5. (61,26,24,9,15,8). 6. (53,21,35,7,37,29).

W

Variant 12.
(39665,3,101671). 2. (1524090405,1,1527869719).
(12091,50,157). 4. (116259959,157861,92205230).
5. (47,30,28,10,40,42). 6. (47,45,16,4,5,17).

W P

Variant 13.
1. (200501,1,200623). 2. (718152312,1, 719026801).
(152051,128,5721). 4. (9643325473,35665346,4092805818).
5. (47,41,26,5,16,4). 6. (43,33,37,7,2,20).

w

Variant 14.
1 (110525,1,111101). 2. (815140525,1,827010683).
(123463,333,31005). 4. (308880049,2924785,220730336).
(43,33,2,9,23,27). 6.(31,17,26,5,12,24).

o w

Variant 15.
1 (152312,1,155357). 1.(718081404,1,722603899).
(182731,48976,243087488). 4.(1671731863,52746,1364142592).
5. (31,24,23,9,4,15). 6.(31,24,4,6,3,16).

w

Laboratory Study Ne 7 «ldeals of Rings»
Necessary Theoretical Data

Definition 7.1. A ring is a nonempty set K equipped with two binary operations
called addition (+) and multiplication (¢); K is required to be an abelian group under
addition; multiplication and addition are linked by the distributive laws:

{atb)ec=am+bm; a-(b+c)=a-b+a-c
forall a,b,c e K.

The rings are distinguished by number of elements (finite or infinite) and
properties of multiplication (associative and nonassociative, commutative and
noncommutative, with a unity and without unity, with zero divisors and without
divisors of zero, etc.).

Definition 7.2. A subring ofaring K is a subgroup of the additive group (K,+)
that is the ring itself, i.e., it is closed under multiplication in the ring K.

Definition 7.3. A subring J ofaring K is said to be a left ideal of K if for all
Ke K and forevery j eJ itholds jkeJ,ie., JkczJ. If kJc;J for all elements
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K e K then J is called aright ideal. An ideal that is both left and right is said to be a
two-sided ideal.

In any ring K the sets {0} and K are formally the ideals of K. They are called
improper ideals unlike the restproper ideals.

Theorem 7.1. For every element a ofa ring K the sets aK = {ak \k e. K}

and Ka = [ka\ k e K) are respectively a left and a right ideals of K.

Definition 7.4. The left and the right ideals from Theorem 7.1 are called,
respectively, a left principal ideal <a > and a right principal ideal <a > ofaring K,
i.e., left and right principal ideals are subrings of a ring K, that consist of all
elements ak, Kk e K or ka, ke K accordingly.

Theorem 7.2. In the ring ofintegers, Z, every ideal J isprincipal.

In every ring {0} is a principal ideal.

Definition 7.5. An ideal M (left, right, two-sided) of a ring K is called
maximal if there exists no other proper ideal J suchthat M ¢J .

Theorem 7.3. In the ring of integers an ideal J = <p> is maximal iffp is a
prime number.

Definition 7.5. A polynomial / e P[x] is said to be irreducible over P if / has
positive degree and f(x) =bc with b,ceP implies either b or c is a constant
polynomial.

Theorem 7.4. In the ring ofpolynomials /*[x] with coefficients in afield P
every ideal J is principal. The ideal J =<m(x) > generated by a polynomial

m(x) is maximal iff m(x) is irreducible over P .

Problems for Classroom

Problem 7.1. Give the definition of a ring.

Problem 7.2. Give ten examples of rings.

Problem 7.3. Do there exist finite noncommutative rings?

Problem 7.4. Do there exist rings without 1?

Problem 7.5. Give examples of subrings in Z . Are your subrings ideals? Does
the set | of integers with the remainder of 1 when divided by 5 form an ideal in the
ring Z?

Solution. Suppose / el,gel . Since / and g give remainder of 1 when
divided by 5 then f +g give the remainder of 2 when divided by 5. Hence
f +9 <€l . Therefore / is not closed under addition. Thus, | is not a subring and

moreover is not an ideal.
Problem 7.6. The same questions for the polynomial ring. Does the set | of
polynomials with even free terms form an ideal in the ring Z[x\ of polynomials with

integer coefficients?
Solution. Determine whether | is a subring.
Suppose / (x) e/, g(x) e/ . Then

fix) =anxn+an xnx+...+ax +aQ g(x) = bmxm+bm Ixm-1+...+bx +bQ
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