1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ

Импульс системы *п* материальных точек

$$\vec{P} = \sum_{i=1}^{n} \vec{p}_i,$$

где $\vec{p}_i = m_i \vec{v}_i$ — импульс i-й точки в момент времени t (m_i и \vec{v}_i — ее масса и скорость).

Из закона изменения импульса системы

$$\frac{d\vec{P}}{dt} = \sum_{i=1}^{N} \vec{F}_{i},$$

где $\vec{F}_1,...,\vec{F}_N$ — внешние силы, действующие на систему, вытекают следующие законы сохранения:

- 1) если система частиц замкнута или сумма внешних сил равна нулю, то импульс системы сохраняется, т.е. в любой момент времени $\vec{P}(t) = co\vec{n}st$;
- 2) если система частиц не замкнута, но проекция суммы сил на некоторое направление x равна нулю, то проекция импульса системы на это направление сохраняется, т.е. P_x t = const.

Момент импульса системы материальных точек

$$\vec{L} = \sum_{i=1}^{n} \left[\vec{r}_i, \vec{p}_i \right],$$

где $\vec{r_i}$ и \vec{p}_i — соответственно радиус-вектор и импульс i-й точки в момент времени t.

Из закона изменения момента импульса системы

$$\frac{d\vec{L}}{dt} = \sum_{i=1}^{N} \vec{M}_{j},$$

где $\vec{M}_j = \left[\vec{r}_1, \vec{F}_1\right], ..., \vec{M}_N = \left[\vec{r}_N, \vec{F}_N\right]$ — моменты внешних сил, действующих на систему, следуют законы сохранения:

- 1) если система частиц замкнута или сумма моментов внешних сил равна нулю, то момент импульса системы сохраняется, т.е. $\vec{L}(t) = co\vec{n}st$;
- 2) если система частиц не замкнута, но проекция суммы моментов внешних сил на какое-либо направление равна нулю, то проекция момента импульса на это направление сохраняется, т.е. $L_{\rm x}$ t = const

В частности, если система частиц находится в центрально-симметричном силовом поле. т.е. в поле вида $\vec{F}(\vec{r}) = f(r)\vec{r}$, где f(r) — некоторая скалярная функция модуля радиуса-вектора \vec{r} относительно центра поля, то момент импульса системы сохраняется.

Механическая энергия системы материальных точек

$$E = \sum_{i=1}^{n} \frac{m_{i} v_{i}^{2}}{2} + V(\vec{r}_{1}, ..., \vec{r}_{n}),$$

где V $\vec{r}_1,...,\vec{r}_n = \sum_{1 \le i \le j \le n} V_{ij} \left| \vec{r}_i - \vec{r}_j \right|$ — энергия взаимодействия или собственная потенциальная энергия системы $V_{ij} \left(\left| \vec{r}_i - \vec{r}_j \right| \right)$ — энергия взаимодействия i-й и j-й частиц).

Из закона изменения механической энергии системы

$$\frac{dE}{dt} = N_{\text{внеш}} + N_{\text{внутр}}^{\text{дис}},\tag{1}$$

где $N_{\mathtt{внеш}}$ — суммарная мощность внешних сил, действующих на систему, $N_{\mathtt{внутр}}^{\mathtt{дис}}$ — суммарная мощность внутренних диссипативных сил взаимодействия, вытекают следующие законы сохранения:

- 1) если система замкнута и в ней отсутствуют диссипативные силы взаимодействия, то ее механическая энергия сохраняется, т.е. $E \ t = const$.
- 2) если система не замкнута и в ней имеются диссипативные силы взаимодействия, но $N_{\text{внеш}} + N_{\text{внутр}}^{\text{дис}} = 0$, то ее механическая энергия сохраняется.

Замечание. Если среди внешних сил имеются консервативные, то

$$N_{\text{внеш}} = -\frac{dU}{dt} + N_{\text{стор}},$$

где $U = \sum_{i=1}^n U_i(\vec{r}_i)$ — потенциальная энергия системы в поле консервативных сил ($U_i(\vec{r}_i)$ потенциальная энергия i-й частицы в этом поле), $N_{\text{стор}}$ суммарная мощность сторонних сил, т.е. сил, не принадлежащих полю. Тогда (1) можно представить в виде

$$\frac{dE_{\text{полн}}}{dt} = N_{\text{стор}} + N_{\text{внутр}}^{\text{дис}},\tag{2}$$

где $E_{\text{полн}}$ — полная механическая энергия системы в силовом поле:

$$E_{\text{полн}} = \sum_{i=1}^{n} \frac{m_{i} v_{i}^{2}}{2} + V + U.$$

Из закона (2) следует, что если $N_{\sf cтор} + N_{\sf внутр}^{\sf дис} = 0$ (в частности, если $N_{\sf стор} = N_{\sf внутр}^{\sf дис} = 0$), то полная механическая энергия системы сохраняется, т.е. $E_{\sf pope}(t) = const$.

Кинетическая энергия твердого тела, вращающегося с угловой скоростью вокруг фиксированной оси

$$K = \frac{I\omega^2}{2},$$

где I — момент инерции тела относительно этой оси.

Кинетическая энергия твердого тела, совершающего плоское движение

$$K = \frac{I_c \omega^2}{2} + \frac{m v_c^2}{2} ,$$

где I_c — момент инерции тела относительно оси вращения, проходящей через его центр инерции, ω — угловая скорость, m масса тела, υ_c — скорость центра инерции тела.

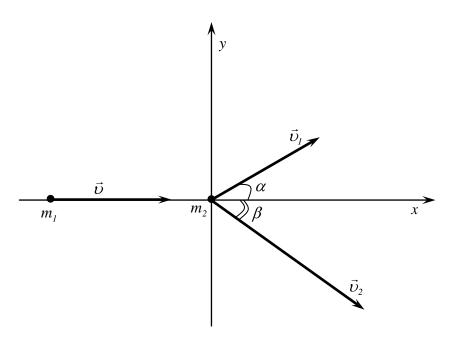
Задача 1.17. Частица массой m_1 , налетает со скоростью \vec{v} на покоящуюся частицу массой $m_2 < m_1$ и после упругого нецентрального удара отклоняется на максимально возможный угол . Найти скорость частиц после соударения.

Решение. Допустим, что система частиц замкнута. Тогда выполняются законы сохранения энергии и импульса системы:

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 v^2}{2}; \tag{1}$$

$$m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}, \qquad (2)$$

где \vec{v}_1, \vec{v}_2 — скорости частиц после соударения (рис. 1.17).



Puc. 1.17

Введем для краткости величину $k = \frac{m_2}{m_1}$. Тогда уравнения (1) и (2) перепишутся в виде

$$v_1^2 + k v_2^2 = v^2, (3)$$

$$\vec{v_1} + k\vec{v_2} = \vec{v} . \tag{4}$$

Спроектируем уравнение (4) на оси координат (рис. 1.17):

$$v_1 \cos \alpha + k v_2 \cos \beta = v, \tag{5}$$

$$v_1 \sin \alpha - k v_2 \sin \beta = 0. \tag{6}$$

Уравнения (3), (5), (6) связывают четыре неизвестных $\upsilon_1, \upsilon_2, \alpha, \beta$. Из уравнений (5) и (6) следует:

$$k\nu_{2}\cos\beta = \nu - \nu_{1}\cos\alpha,\tag{7}$$

$$k\nu_2 \sin \beta = \nu_1 \sin \alpha \,. \tag{8}$$

Возводя уравнения (7) и (8) в квадрат и складывая их, имеем

$$k^{2}v_{2}^{2} = v^{2} - 2v_{1}v\cos\alpha + v_{1}^{2}.$$
 (9)

Из уравнения (3) получим

$$v_2^2 = \frac{v^2 - v_1^2}{k} \,. \tag{10}$$

Подставляя выражение (10) в (9), находим уравнение, связывающее v_1 и α :

$$1 + k \ \upsilon_1^2 - 2\upsilon_1 \upsilon \cos \alpha + 1 - k \ \upsilon^2 = 0. \tag{11}$$

Вещественное решение для скорости υ_1 возможно лишь для тех α , при которых дискриминант уравнения (11) неотрицателен, т.е.

$$4v^2\cos^2\alpha - 4 \ 1 - k^2 \ v^2 \ge 0$$
.

Отсюда $\cos^2 \alpha - 1 + k^2 \ge 0$ или $\sin^2 \alpha \le k^2$. В этом случае знаку равенства соответствует максимальный угол отклонения, т.е.

$$\alpha_{\text{max}} = \arcsin k = \arcsin \frac{m_2}{m_1} \,. \tag{12}$$

Поскольку по условию задачи $\alpha = \alpha_{\max}$, то дискриминант уравнения (11) равен нулю, и решение для $\upsilon_{\scriptscriptstyle \parallel}$ единственно:

$$\upsilon_{1} = \frac{\upsilon \cos \alpha_{\max}}{1+k} = \frac{\upsilon \sqrt{1-\left(\frac{m_{2}}{m_{1}}\right)^{2}}}{1+\frac{m_{2}}{m_{1}}} = \upsilon \sqrt{\frac{m_{1}-m_{2}}{m_{1}+m_{2}}}.$$

Подставляя найденное выражение для υ_1 в формулу (10), получаем

$$\upsilon_2 = \upsilon \sqrt{\frac{2m_1}{m_1 + m_2}} \ .$$

Тогда из (8) следует, что

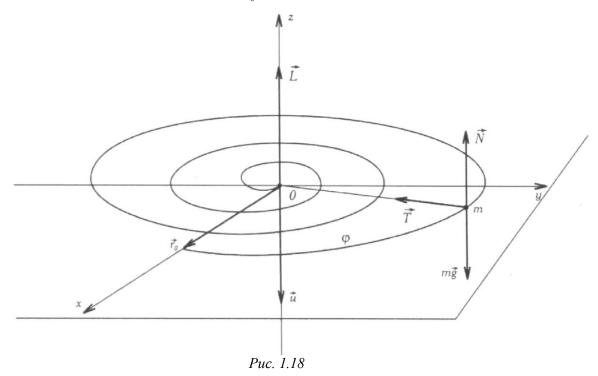
$$\sin \beta = \sqrt{\frac{m_1 - m_2}{2m_1}} \ .$$

Итак, с учетом (12) в рассматриваемой системе координат

$$\vec{v}_{1} = v \left(\frac{m_{1} - m_{2}}{m_{1}} \vec{e}_{x} + \frac{m_{2}}{m_{1}} \sqrt{\frac{m_{1} - m_{2}}{m_{1} + m_{2}}} \vec{e}_{y} \right);$$

$$\vec{v}_{2} = v \left(\vec{e}_{x} - \sqrt{\frac{m_{1} - m_{2}}{m_{1} + m_{2}}} \vec{e}_{y} \right).$$

Задача 1.18. По гладкой горизонтальной плоскости движется небольшое тело массой m, привязанное к нерастяжимой нити, другой конец которой втягивают в отверстие O с постоянной скоростью u (рис. 1.18). Найти работу силы натяжения нити за n полных оборотов тела вокруг точки O от положения, при котором его расстояние до отверстия равно r_0 , а угловая скорость ω_0 .



Решение. Выберем направление оси X вдоль радиуса-вектора \vec{r}_0 , а направление оси Z — вдоль вектора момента импульса тела \vec{L} относительно точки O (рис. 1.18), последнее возможно, поскольку в условиях задачи $\vec{L} = co\vec{n}st$. Это следует из того, что сила трения предполагается пренебрежимо малой, моменты сил тяжести $m\vec{g}$ и реакции опоры $\vec{N} = -m\vec{g}$ компенсируют друг друга, а сила натяжения нити \vec{T} имеет характер центральной, т.е. $\vec{T} = T \vec{r}/r$, и поэтому ее момент относительно точки O равен нулю. При таком выборе координатных осей модуль момента импульса

$$L = L_z = m(x\dot{y} - y\dot{x}). \tag{1}$$

Найдем выражение для L в полярных координатах

$$x = r\cos\varphi\,\,, (2)$$

$$y = r\sin\varphi. \tag{3}$$

Дифференцирование (2) и (3) по времени дает

$$\dot{x} = \dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi;\tag{4}$$

$$\dot{y} = \dot{r}\sin\varphi - r\dot{\varphi}\cos\varphi. \tag{5}$$

Подставляя формулы (2)—(5) в (1) получаем

$$L = mr^2 \dot{\varphi}. \tag{6}$$

Поскольку L = const, а $\dot{\phi} = \omega$, то на основании (6) запишем

$$r^2 \dot{\varphi} = r_0^2 \omega_0. \tag{7}$$

Используя теперь правило дифференцирования сложной функции и учитывая, что по условию задачи $\dot{r} = -u$ (знак минус обусловлен тем, что длина горизонтальной части нити уменьшается, т.е. dr < 0), преобразуем к виду

$$\dot{\varphi} = \frac{d\varphi}{dr}\dot{r} = -u\frac{d\varphi}{dr}.\tag{8}$$

Подставляя (8) в (7), приходим к дифференциальному уравнению траектории тела

$$\frac{d\varphi}{dr} = -\frac{r_0^2 \omega}{ur^2}. (9)$$

Интегрируя уравнение (9), находим

$$\varphi(r) = -\frac{r_0^2 \omega_0}{u} \int \frac{dr}{r^2} = \frac{r_0^2 \omega_0}{ur} + c$$
.

Так как φ $r_0 = 0$, то $c = -\frac{r_0 \omega_0}{u}$. Следовательно,

$$\varphi = \frac{r_0^2 \omega_0}{u} \left(\frac{1}{r} - \frac{1}{r_0} \right). \tag{10}$$

Таким образом, траектория тела представляет собой гиперболическую спираль.

Работа силы натяжения за n полных оборотов тела вокруг точки O равна изменению его кинетической энергии

$$A = \frac{m\upsilon_n^2}{2} - \frac{m\upsilon_0^2}{2} ,$$

где υ_0 — скорость тела в положении \vec{r}_0 , υ_n — скорость тела к концу n-го оборота. Но в соответствии с определением, формулами (4), (5) и равенством (7)

$$v^{2} = \dot{x}^{2} + \dot{y}^{2} = \dot{r}^{2} + r^{2}\dot{\varphi} = u^{2} + \frac{r_{0}^{4}\omega_{0}^{2}}{r^{2}}.$$

Следовательно,

$$A = \frac{mr_0^4 \omega_0^2}{2} \left(\frac{1}{r_n^2} - \frac{1}{r_0^2} \right) =$$

$$= \frac{mr_0^4 \omega_0^2}{2} \left(\frac{1}{r_n} - \frac{1}{r_0} \right) \left(\frac{1}{r_n} + \frac{1}{r_0} \right)$$
(11)

где r_n — длина горизонтальной части нити после n-го оборота.

С помощью (10) находим

$$\frac{1}{r_n} - \frac{1}{r_0} = \frac{2\pi nu}{r_0^2 \omega_0} \,. \tag{12}$$

Тогда

$$\frac{1}{r_n} + \frac{1}{r_0} = \frac{2\pi nu}{r_0^2 \omega_0} \left(1 + \frac{r_0 \omega_0}{\pi nu} \right). \tag{13}$$

Подставляя (12) и (13) в (11), окончательно получаем

$$A = 2\pi^2 n^2 m u^2 \left(1 + \frac{r_0 \omega_0}{\pi n u} \right).$$

Задача 1.19. Однородный стержень круглого сечения радиусом R, массой m_2 и длиной l лежит на гладкой горизонтальной поверхности. Шарик радиусом R и массой m_1 , двигаясь со скоростью, перпендикулярной к стержню, упруго ударятся об его конец на расстоянии R от торца. Считая, что R << l, найти: 1) угловую скорость вращения стержня, скорость его центра инерции и скорость шарика после удара; 2) зависимость доли переданной энергии от отношения масс $k = \frac{m_2}{m_1}$.

Решение. 1. Выберем систему координат так, чтобы шарик и стержень лежали в плоскости XY (рис. 1.19). Так как шарик и стержень имеют одинаковые радиусы, то после столкновения шарик не вылетит из плоскости XY. Так как столкновение происходит на расстоянии R от торца, то шарик все время остается на первоначальной прямой, двигаясь после столкновения либо в прежнем направлении, либо в противоположном, или останавливается (в зависимости от k). Поскольку трение отсутствует, а силы тяжести уравновешены силами реакции опоры, то выполняются законы сохранения импульса, момента импульса и энергии системы:

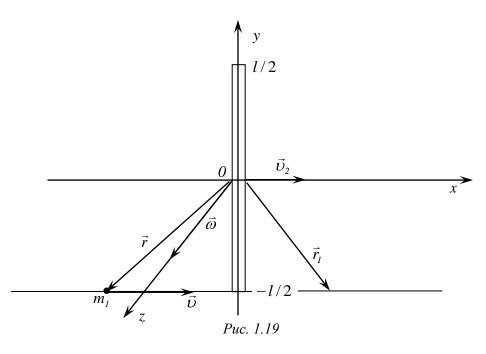
$$m_i \vec{\mathcal{U}} = m_i \vec{\mathcal{V}}_i + m_i \vec{\mathcal{V}}_i, \tag{1}$$

$$m \vec{r}, \vec{\upsilon} = m_1 \vec{r}_1, \vec{\upsilon}_1 + I \vec{\omega}, \tag{2}$$

$$\frac{m_1 v^2}{2} = \frac{m_1 v_1^2}{2} + \frac{I\omega}{2} + \frac{m_2 v_2^2}{2} , \qquad (3)$$

где \vec{v}_1 — скорость шарика после соударения; \vec{v}_2 — скорость центра инерции стержня; I — момент инерции стержня относительно оси Z — (рис. 1.19). Так как по условию R < < l, то можно взять

$$I = \frac{m_2 l^2}{12}.$$



В уравнениях (2) и (3), кроме того, учтено, что стержень после соударения совершает плоское движение, вращаясь вокруг одной из своих главных осей инерции.

Спроектируем уравнение (1) на ось X, а уравнение (2) — на ось Z:

$$m_1 \upsilon + m_1 \upsilon_{1x} = m_2 \upsilon_2,$$

 $m_1 x \upsilon_y - y \upsilon_x = m_1 x_1 \upsilon_{1y} - y_1 \upsilon_{1x} + I \omega.$ (5)

Так как R << l, то $y=y_1=-\frac{1}{2}$. Кроме того, $U_y=U_{1y}=0$. Следовательно, уравнение (5) можно переписать в виде

$$\frac{m_1 l \upsilon}{2} = \frac{m_1 l \upsilon_{1x}}{2} + I \omega.$$

С учетом формулы (4) и того, что $\upsilon_{lx}=\pm\upsilon_{l}$, вместо уравнений (1)—(3) имеем:

$$\upsilon = \upsilon_{1x} + k\upsilon_{2}, \tag{6}$$

$$\upsilon = \upsilon_{1x} + \frac{1}{6}kl\omega, \tag{7}$$

$$v^2 = v_{1x}^2 + kv_2^2 + \frac{1}{12}kl^2\omega^2, \tag{8}$$

где $k = \frac{m_2}{m_1}$. Из уравнений (6) и (7) очевидно следует, что

$$\omega = \frac{6\nu_2}{I} \,. \tag{9}$$

Подставляя (9) в (8), приходим к системе двух уравнений с двумя неизвестными:

$$\upsilon = \upsilon_{1x} + k\upsilon_2, \tag{10}$$

$$v^2 = v_{1x}^2 + 4kv_2^2 \,. \tag{11}$$

Исключая из уравнения (11) с помощью (10) неизвестную υ_{lx} , получаем

$$k + 4 v_2^2 - 2vv_2 = 0$$
.

(4)

Поскольку нас интересует ненулевое решение, то

$$v_2 = \frac{2v}{k+4} \,. \tag{12}$$

Подставляя далее (12) в (9) и (10), находим:

$$\omega = \frac{12\nu}{l + 4} \,, \tag{13}$$

$$v_{1x} = \frac{4 - k}{4 + k} v. {14}$$

Из выражения (14) следует, что $\upsilon_{1x}>0$, если k<4; $\upsilon_{1x}=0$, если k=4; и $\upsilon_{1x}<0$, если k>4, т.е. при $m_2<4m_1$ шарик будет двигаться в прежнем направлении; при $m_2=4m_1$ шарик остановится, и при $m_2>4m_1$ шарик отскочит от стержня.

Энергия, переданная шариком стержню

$$E_2 = \frac{m_2 v_2^2}{2} + \frac{I\omega^2}{2} \,. \tag{15}$$

Подставляя в равенство (15) выражения (4), (12), (13), получаем

$$E_2 = \frac{8m_2v^2}{4+k^2}$$
.

Учитывая же, что начальная энергия $E_0 = \frac{m_{
m l} \upsilon^2}{2}$, находим долю переданной энергии

$$q = \frac{E_2}{E_1} = \frac{16k}{4+k^2} \, .$$

Используя теперь стандартный метод исследования функции на экстремум, находим, что максимальная передача энергии происходит при k=4, т.е. при $m_2=4m_1$. В этом случае шарик передает всю свою энергию стержню и останавливается.

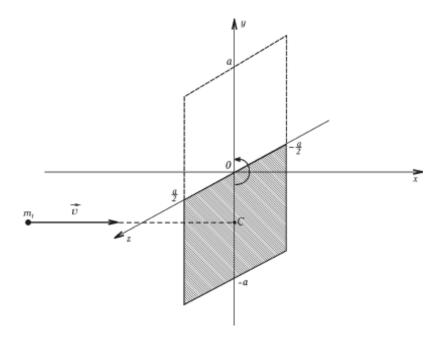
Задача 1.20. Однородная тонкая квадратная пластинка со стороной a и массой m может вращаться вокруг горизонтальной оси, совпадающей с одной из ее сторон. В центр пластинки по нормали к ее поверхности ударяется шарик массой m_1 и прилипает к ней. Какому условию должна удовлетворять скорость шарика, чтобы пластинка стала вращаться? Силой трения в оси и сопротивлением воздуха пренебречь.

Решение. Обозначим через τ время соударения (т.е. время, в течение которого скорость частиц шарика относительно пластинки станет равной нулю). Допустим, что в течение времени τ пластинка с прилипающим к ней шариком весьма незначительно выходит из вертикальной плоскости (рис. 1.20). Тогда момент силы тяжести относительно оси вращения будет в течение этого промежутка времени пренебрежимо мал. Поэтому момент импульса системы шарик-пластинка относительно той же оси можно считать в течение времени τ постоянным, т.е. L_z t = const, $0 \le t \le \tau$. Но

$$L_{z} = \frac{m_{l} \upsilon a}{2}, \tag{1}$$

$$L_z \tau = (I + \frac{m_1 a^2}{4})\omega, \qquad (2)$$

где ω — начальная угловая скорость вращения пластинки; I — момент инерции пластинки относительно оси Z.



Puc. 1.20

Разобьем мысленно пластинку на бесконечно тонкие стержни, перпендикулярные к оси Z. Момент инерции относительно этой оси каждого из них равен $\frac{dma^2}{3}$, где dm — масса стержня. Тогда из аддитивности момента инерции следует, что

$$I = \int_{0}^{m} \frac{a^2}{3} dm = \frac{ma^2}{3} \,. \tag{3}$$

Приравнивая выражения (1) и (2), получаем

$$\omega = \frac{m_1 \upsilon a}{2\left(I + \frac{m_1 a^2}{4}\right)}.$$
(4)

Поскольку трение в оси и сопротивление воздуха пренебрежимо малы, то для всех $t \ge \tau$ выполняется закон сохранения полной механической энергии системы $E_{\mathsf{полн}} = \left(I + \frac{m_1 a^2}{4}\right) \omega^2 \left/2 + \left(m + m_1\right) gy$ в поле силы тяжести (плоскость XZ выбрана за нулевой уровень потенциальной энергии). Тогда, обозначая через ω_1 угловую скорость пластинки в наивысшем положении ее центра инерции $c\left(y_c = \frac{a}{2}\right)$, можем записать:

$$\frac{\left(I + \frac{m_1 a^2}{4}\right) \omega^2}{2} - \frac{1}{2} m + m_1 ga = \frac{\left(I + \frac{m_1 a^2}{4}\right) \omega_1^2}{2} + \frac{1}{2} m + m_1 ga.$$
 (5)

Из (5) очевидно следует, что для вращения пластинки необходимо, чтобы выполнялось неравенство

$$\frac{\left(I + \frac{m_1 a^2}{4}\right) \omega^2}{2} > m + m_1 ga,$$

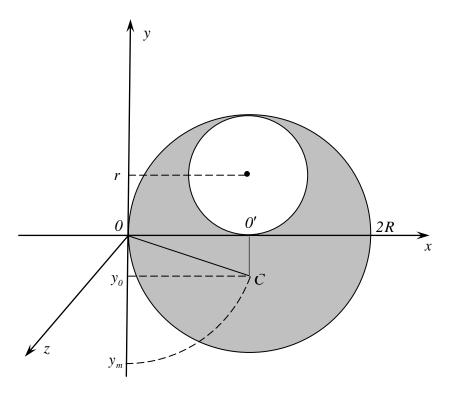
или, подставляя сюда (4),

$$\frac{m_1 \upsilon^2 a^2}{8\left(I + \frac{m_1 a^2}{4}\right)} > m + m_1 \quad ga.$$

Отсюда с учетом выражения (3) получаем искомое условие

$$v > \sqrt{\frac{2 m + m_1 4m + 3m_1}{3m_1^2} ga}.$$

Задача 1.21. Однородный диск радиусом R с круглым вырезом (рис. 1.21) может вращаться без трения в вертикальной плоскости вокруг точки O. В некоторый момент времени диск начинает двигаться без начальной скорости из положения, указанного на рис. 1.21. Масса диска с вырезом равна m. Найти максимальную угловую скорость диска.



Puc. 1.21

Решение. Поскольку трение пренебрежимо мало, для решения можно воспользоваться законом сохранения энергии диска в поле силы тяжести:

$$mgy_0 = \frac{I\omega_m^2}{2} + mgy_m, (1)$$

где I — момент инерции диска относительно оси Z; y_0 — ордината центра инерции диска c в начальном положении; y_m — ордината центра инерции диска c в наинизшем положении (плоскость XZ выбрана за нулевой уровень потенциальной энергии). Из уравнения (1) следует

$$\omega_m = \sqrt{\frac{2mg \ y_0 - y_m}{I}} \ . \tag{2}$$

Из рис. 1.21 видно, что

$$y_m = -\sqrt{R^2 + y_0^2} \ . {3}$$

Поэтому задача сводится к определению y_0 и I.

Обозначим через m_0 массу диска без выреза, а радиус выреза — через r. Так как $r = \frac{R}{2}$, то

$$m_0 = \frac{m}{\pi R^2 - r^2} \pi R^2 = \frac{4}{3} m$$
.

Отметим, что в начальном положении центр инерции сплошного диска находится в точке O', где его ордината равна нулю. Поэтому из определения центра инерции следует

$$my_0 + m_0 - m r = 0,$$

откуда

$$y_0 = -\frac{m_0 - m \ r}{m} = -\frac{r}{3} = -\frac{R}{6}.$$
 (4)

Момент инерции диска с вырезом относительно оси Z найдем, используя аддитивность момента инерции и теорему Штейнера. Момент инерции сплошного диска относительно оси Z

$$I_1 = \frac{3m_0R^2}{2} = 2mR^2$$
.

Момент инерции малого диска в форме выреза относительно той же оси, согласно теореме Штейнера,

$$I_2 = \frac{1}{2} m_0 - m r^2 + m_0 - m R^2 + r^2 = \frac{11}{24} mR^2$$
.

Тогда из аддитивности момента инерции следует, что $I_1 = I + I_2$, откуда

$$I = I_1 - I_2 = \frac{37}{24} mR^2. (5)$$

Подставляя выражения (3), (4) и (5) в формулу (2), находим, что максимальная угловая скорость

$$\omega_m = \sqrt{\frac{8g \sqrt{37} - 1}{37R}} \ .$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Снаряд в верхней точке траектории на высоте h разорвался на два осколка, так что отношение их масс $\frac{m_1}{m_2} = 2$. Скорость снаряда в этой точке равна υ . Осколок массой m_2 полетел в том же направлении

со скоростью $\upsilon_2 = 3\upsilon$. Определить расстояние между точками падения осколков. Сопротивлением воздуха пренебречь.

Ответ: $s = 3\upsilon\sqrt{2h/g}$.

2. Между двумя одинаковыми шариками происходит нецентральный упругий удар. Под каким углом ф друг к другу они разлетятся, если один из шаров первоначально покоился?

Otbet: $\varphi = \pi/2$.

3. Однородная тонкая пластинка в форме равностороннего треугольника может вращаться без трения вокруг горизонтальной оси, совпадающей с одной и ее сторон. В центр покоящейся пластинки по нормали к ней упруго ударяется шарик массой m. Какой должна быть масса пластинки m_n , чтобы шарик после удара остановился?

Ответ: $m_n = 2m/3$.

4. Однородный тонкий стержень массой m_1 , и длиной l лежит на гладкой горизонтальной поверхности. Шарик массой m_2 двигаясь со скоростью \vec{v} , направленной перпендикулярно к стержню, ударяется о конец стержня и прилипает к нему. Найти: 1) угловую скорость вращения стержня с прилипшим шариком; 2) скорость их центра инерции после удара; 3) долю механической энергии, перешедшей в теплоту.

Otbet:
$$\omega = \frac{6m_2\upsilon}{l\ m_1 + 4m_2};\ \upsilon_c = \frac{m_2\upsilon}{m_1 + m_2};\ q = \frac{m_1}{m_1 + 4m_2}.$$

5. Однородный тонкий стержень длиной l может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через одну из его точек. Стержень отклоняют на угол $\frac{\pi}{2}$ от вертикали и без начальной скорости отпускают. На каком расстоянии a от центра инерции стержня должна находиться ось, чтобы в момент прохождения стержнем вертикали его угловая скорость была наибольшей?

OTBET:
$$a = \frac{1}{2\sqrt{3}}$$
.