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59-60 Find the average value of f over the region D. 64. ﬂ /R = x2 — yz dA

59. f(x,y) = xy, D is the triangle with vertices (0, 0), (1, 0), D . . . .
and (1, 3) D is the disk with center the origin and radius R

60. f(x,y) = xsiny, D isenclosed by the curvesy = 0, 65. U @2x + 3y) dA,

y=x%andx =1

Qo

istherectangle0 < x<a,0<y=<b
61. Prove Property 11.

66. Jf (2 + x%y® — y%sinx) dA,
62. In evaluating a double integral over a region D, a sum of D
iterated integrals was obtained as follows: D={xy | x|+ |yl <1}
1 2y 3 [3-y N
[[rocyyaa = [* 7 fooy axdy + 77 F0xy) dxdy 7. [| (ax® + by> + V7= x) da,
D D
Sketch the region D and express the double integral as an D =[—a,a] X [—h,b]
iterated integral with reversed order of integration.
63-67 Use geometry or symmetry, or both, to evaluate the CAS| 68. Graph the solid bounded by the plane x +y + z = 1and
double integral. the paraboloid z = 4 — x? — y? and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
63. g (x+2)dA, D= {(x, y) |0<sy<9- XZ} the boundary curves of the region of integration, and to eval-
D uate the double integral.)

Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral ([, f(x, y) dA, where R is one of the

regions shown in Figure 1. In either case the description of R in terms of rectangular coor-
dinates is rather complicated, but R is easily described using polar coordinates.

y y
+y2=1 tyi=4
R R
0 X
I
0 x4y’ =1 .
FIGURE 1 @R={r0)]0sr<1,0<s0<27w} O R={r,0)|1<r<2,0<0<m}
Y Recall from Figure 2 that the polar coordinates (r, 6) of a point are related to the rect-
P(r, 0) = P(x, ) angular coordinates (x, y) by the equations
) y r2=x%+y? X = rcos 6 y=rsin@
o
0 X X (See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle
FIGURE 2

R={rn6|asr=ba=<6=p}
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which is shown in Figure 3. In order to compute the double integral [[. f(x, y) dA, where R
is a polar rectangle, we divide the interval [a, b] into m subintervals [ri_1, ri] of equal width
Ar = (b — a)/m and we divide the interval [«, 8] into n subintervals [6;—1, 6;] of equal
width A@ = (B — @)/n. Then the circles r = r; and the rays 6 = 6; divide the polar rect-
angle R into the small polar rectangles Ri; shown in Figure 4.

0=9;
\ 0= 0,_1
r=b R;j \ * g
0=B \./(’1 H])
R
/ Af /4 f
/ %// /
/r=a 0= 17,5, 7 r=r;
/ ! “ et
(B_~~ Wy == re i
par b=~
0 0
FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles

The “center” of the polar subrectangle
Rij = {(r, O) | riei<rs<r,6.1<0< Gj}
has polar coordinates
7 =5(h+ 1) 6 =361+ 6)

We compute the area of R;j; using the fact that the area of a sector of a circle with radius r
and central angle 6 is 3r26. Subtracting the areas of two such sectors, each of which has cen-
tral angle A6 = 6; — 6;-1, we find that the area of R; is

AAi = %I"ion — %riz,l AG = %(riz— ri271)A0

=3(r+ ri)(n — o) AG=r*ArAg

Although we have defined the double integral [f, f(x, y) dA in terms of ordinary rect-
angles, it can be shown that, for continuous functions f, we always obtain the same
answer using polar rectangles. The rectangular coordinates of the center of R;; are
(ri* cos 6, ri* sin 6), so a typical Riemann sum is

(1] X X f(rcos 6, r sin 6) AA = X X (1" cos 6, ri* sin 6) 1" Ar A6

i=1j=1 i=1j=1

If we write g(r, 6) = rf(rcos 6, rsin ), then the Riemann sum in Equation 1 can be writ-
ten as

INZE

> g(r’, 6F) Ar A6

i=1j=1
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FIGURE 5

Here we use the trigonometric identity
sin?0 = 3(1 — cos 26)

See Section 7.2 for advice on integrating
trigonometric functions.

SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES 999

which is a Riemann sum for the double integral

LB Lb g(r, 6) drde

Therefore we have

H f(x,y)dA = lim 3 S f(r* cos 67, 1 sin 6%) AA;
R

MmN=% j=1 j=1

lim X D g(r*, 6%) ArAg = fﬁf“g(r, 9) dr do

MN=% j=1 j=1

= fﬁfbf(r cos O, rsin ) rdr dé

@ Change to Polar Coordinates in a Double Integral If f is continuous on a polar
rectangle Rgivenby0<a<r<b,a< 6 < B,where0 < 8 — a < 27, then

f(x,y)da= "t ,rsin 6) rdrd
f! (x,y) dA LJa (rcos 6, rsin ) rdrdd

The formula in says that we convert from rectangular to polar coordinates in a
double integral by writing x = r cos # and y = r sin 6, using the appropriate limits of inte-

@ gration for r and 6, and replacing dA by r dr d6. Be careful not to forget the additional

factor r on the right side of Formula 2. A classical method for remembering this is shown
in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an ordinary rect-
angle with dimensions r d6 and dr and therefore has “area” dA = r dr dé.

[ETNETEN Evaluate [f, (3x + 4y®) dA, where R is the region in the upper half-plane
bounded by the circles x> + y*> = 1 and x + y* = 4.
SOLUTION The region R can be described as
R={(xy) |y=0 1=<x*+y?<4}
It is the half-ring shown in Figure 1(b), and in polar coordinates it is givenby 1 < r < 2,

0 < 0 < . Therefore, by Formula 2,

ﬂ (3x + 4y?)dA = foﬂ jlz (3rcos @ + 4r?sin0) r dr d6

R

= foﬂ jlz (3r?cos @ + 4r®sin?9) dr do

r

= f; [r3cos o+r! sinze]rj do = foﬂ (7 cos 6 + 15sin%0) do
= foﬂ [7 cosd + 2 (1 — cos 20)] de

=7sing+ —— —sin20| = [
2 2

150 15 . " 157
4

0
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FIGURE 6
0=p 7= h,(0)
D

/

/

/ B 0=«

[oa

o r=h0)

FIGURE 7
D={(r.0)|a< 0= p. h(0)<r=h(0)}

FIGURE 8

1 IEZXTETF Find the volume of the solid bounded by the plane z = 0 and the parabo-
loidz =1 — x* —y2

SOLUTION If we put z = 0 in the equation of the paraboloid, we get x*> + y? = 1. This
means that the plane intersects the paraboloid in the circle x? + y? = 1, so the solid
lies under the paraboloid and above the circular disk D given by x? + y? < 1 [see Fig-
ures 6 and 1(a)]. In polar coordinates D is given by 0 < r < 1,0 < 6 < 2. Since

1 —x? —y?=1 —r? the volume is

v=ﬂ (1 — x? —yz)dA=f02”fol(1 —r2)rdrdo

1
_Tde - rydr—2m] o =
—fo defo(r r)dr—27r[2 4]0 >

If we had used rectangular coordinates instead of polar coordinates, then we would have
obtained

_ g2 2 _ [t (V¥ _y2 2
v_ij(l X% — y2)dA Ljfﬂ(l X% — y2)dy dx
which is not easy to evaluate because it involves finding [ (1 — x*)¥2dx. [

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type Il rectangular regions considered in Section 15.3.
In fact, by combining Formula 2 in this section with Formula 15.3.5, we obtain the follow-
ing formula.

|E| If f is continuous on a polar region of the form

D= {(r, 0) |la<0=<p, h(h) <rs hz(e)}

then ﬂ f(x,y) dA = ff jhh((;) f(rcos 6, rsin 6) rdrdé
D

In particular, taking f(x,y) = 1, hi(6) = 0, and h,(#) = h(6) in this formula, we see
that the area of the region D bounded by 6 = «, 6 = B, and r = h(6) is

A(D) =ﬂ1dA=ffoh(”rdrd0
D

rz h(6)
=j5 [7]0 do = [”3h(0)]2do

and this agrees with Formula 10.4.3.
1 [EZNTETE] Use a double integral to find the area enclosed by one loop of the four-
leaved rose r = cos 26.

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the
region

D={(r, 0 | —m/4 < < m/4,0<r< cos26}
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So the area is

o= o= [
- :‘/‘4 [2r7]* a0 = %f:‘l cos?260 d

L 1 1o w/4 a
=ZJL_”/4 (1 + cos 46) d0:1[9+ 2 SIn 40]77/4:? r—

1 IETXEZTA Find the volume of the solid that lies under the paraboloid z = x? + y?,
above the xy-plane, and inside the cylinder x* + y? = 2x.

SOLUTION The solid lies above the disk D whose boundary circle has equation
x2 + y? = 2x or, after completing the square,

(x—12+y*=1

(See Figures 9 and 10.)

y
(x—1)2+y*=1
(or r=2cos 0)
D ==
0 1 5 X E
y
FIGURE 9 FIGURE 10

In polar coordinates we have x? + y? = r? and x = r cos 6, so the boundary circle
becomes r? = 2rcos 6, or r = 2 cos 6. Thus the disk D is given by

D={(r,0) | —7/2 <6< /2, OSI’$ZCOSG}

and, by Formula 3, we have

2cos 6
_ 2 2 _ w2 [2cos6 , _ /2 l'_4
v g (¢ + y?yda = [ [ rerdrde L/z[4] do

0

T, T, /2 1 + cos 29 2
=4f 2 cos“0d0=SJ "2 cos*0do = 8 —— | do
—7/2 0 0 2

=2 ["[1 + 2c0s 20 + 5(1 + cos 40)] do

- 3 3
= 2[%0 + sin 20 + 3 sin 46)]0/2 = 2(5) <g> = 777 [ |
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(3N Exercises

1-4 Aregion R is shown. Decide whether to use polar coordinates
or rectangular coordinates and write ([ f(x, y) dA as an iterated
integral, where f is an arbitrary continuous function on R.

1. y 2. y
4 1 y=1*x2
0 4 x
-1 0 1 x
3 y 4 y
W 6
3
0
-1 0 1 x !

5-6 Sketch the region whose area is given by the integral and eval-
uate the integral.
3m/4 (2
5. LM Jl rdrde

w/2 J0

6. fﬂ/ [zwrdr do

7-14 Evaluate the given integral by changing to polar coordinates.

7. [[, x?y dA, where D is the top half of the disk with center the
origin and radius 5

8. [f, (2x — y) dA, where R is the region in the first quadrant
enclosed by the circle x?> + y? = 4 and the lines x = 0 and

y =X
9. [f,sin(x* + y?) dA, where R is the region in the first quadrant
between the circles with center the origin and radii 1 and 3

2

10. > dA, where R is the region that lies between the

N
.ﬂR X2+y
circlesx? + y>=a*and x> + y2=b?with0 <a<b

11. [, e dA, where D is the region bounded by the
semicircle x = v/4 — y? and the y-axis

12. {f, cos/x2 + y2 dA, where D is the disk with center the
origin and radius 2

13. [ arctan(y/x) dA,
whereR ={(x,y) | 1=sx*+y?’<4, 0sy=<x}

1. Homework Hints available at stewartcalculus.com

14. {[,x dA, where D is the region in the first quadrant that lies
between the circles x? + y? = 4 and x* + y2 = 2x

15-18 Use a double integral to find the area of the region.
15. One loop of the rose r = cos 360

16. The region enclosed by both of the cardioids r = 1 + cos 6
andr =1 — cos 6

17. The region inside the circle (x — 1) + y? = 1 and outside the
circle x> + y>=1

18. The region inside the cardioid r = 1 + cos 6 and outside the
circler = 3cos 6

19-27 Use polar coordinates to find the volume of the given solid.
19. Under the cone z = /x2+ y? and above the disk x> + y2 < 4

20. Below the paraboloid z = 18 — 2x? — 2y? and above the
xy-plane

21. Enclosed by the hyperboloid —x? — y? + z2 = 1 and the
plane z = 2

22. Inside the sphere x? + y? + z? = 16 and outside the
cylinder x2 + y2 =4

23. A sphere of radius a

24. Bounded by the paraboloid z = 1 + 2x? + 2y? and the
plane z = 7 in the first octant

25. Above the cone z = /x2 + y2 and below the sphere
X2+ yi+z2=1

26. Bounded by the paraboloids z = 3x? + 3y? and
z=4—x*—y?

21. Inside both the cylinder x? + y2? = 4 and the ellipsoid
4X* + 4y* + 22 = 64

28. (a) Acylindrical drill with radius r; is used to bore a hole
through the center of a sphere of radius r,. Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height h of
the ring. Notice that the volume depends only on h, not
onry or ry.

29-32 Evaluate the iterated integral by converting to polar
coordinates.

A [,33 joVW sin(x* + y?)dydx  30. J: fﬁ x?ydx dy

3. Jol [yﬁ (x + y) dx dy 32, f: Lf SKET Y dy dx
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