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Quadratic Function on a Banana
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Precalculus Section 1.7
Define and graph quadratic functions

Any function that can be
written in the form:

y  axis of symmetry y = ax? +bx + cis called a
""" quadratic function. It’s
~ graph is called a parabola.

Consider the graphs of the
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Quadratic Functions
The graph of a quadratic function is parabola

A parabola can open —
up or down. RSN B S

If the parabola opens
up, the lowest point is
called the vertex

{P" 'é"é‘é'"l%ma opens

down, the vertex is the
highest point

(maximum). o R
NOTE: if the parabola opens Teft or rlghi"i"t IS nnt a

function!
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Elliptic Paraboloid

Elliptic Paraboloid
2 42
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Trace Plane
Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised o the S
first power. xy-plane

Xy-trace
(one point)
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Hyperbolic Paraboloid

Hyperbolic Paraboloid
y_x
L= 2T 2
b o
Trace Plane

Hyperbola  Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised to the
first power.
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Characteristics of Common Quadric Surfaces

Elliptic Cone z
X2 2 F2
/ a? * %E I 0

Traces

In plane z = p: an ellipse

In plane y = q: a hyperbola

In plane x = r: a hyperbola

In the xz - plane: a pair of lines that intersect at the origin
In the yz - plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a
negative coefficient. The traces in the coordinate planes
parallel to the axis are intersecting lines.

Elliptic Paraboloid
X2y

z="5+
az  b?

Traces

In plane z = p: an ellipse
In plane y = g: a parabola
In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Hyperbolic Paraboloid

X2 P
N

Traces

In plane z = p: a hyperbola
In plane y = q: a parabola
In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.




Quadric surfaces
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Hyperboloids of one sheet
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Quadric Surface

The equation of a quadric surface in space is a second-degree equation of the
form

Ax> + By’ + Cz> + Dxy + Exz+ Fyz + Gx + Hy + Iz + J = 0.

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and
hyperbolic paraboloid.




Ellip=oid Hyperbolic paraboloid Elliptic paraboloid

Hyperboloid of one sheet Hyperboloid of two sheets Cone
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Functions of Two or More
Independent Variables

Usually we study equations of the form y = f(x) where x 1s
the independent variable and y 1s the dependent variable.

An equation of the form z= f(x, y) describes a function of
two independent variables if for each ordered pair (x, y),
there 1s only one z determined. The variables x and y are
independent variables and z 1s a dependent variable.

An equation of the form w = f(x, y, z) describes a function
of three independent variables if for each ordered triple
(x, v, z), there 1s only one w determined.

Barnett/'Ziegler/Byleen Business Calculus 12e



Calculus

Functions of two variables:

To each point ( x, v Jof a certain part of thex—V plane, x€ R,
ve Ror(x,v)e RxR=R", there corresponds a real value z

according to some rule f(x,v), then f(x,¥) iscalled a real valued
function of two variables X,V and is written as

z=f(x,v),xeR,veR,
In general, a real valued function of n variables is defined as
2= P R Xk U0 s X EN 2 ER

Where x,,X,,...X, arethen independent variablesand z is the
dependent variable.

Domain of function: The set of points (X, ) inthe x— y plane for which
f(x,v) is defined is called the domain of the function and is denoted
by D.



§ Chapter17: Multivariable Calculus ‘/4

17.1 Functions of Several Variables

? + A function can involve 2 or more variables, e.qg.

- 2
F=FlX V)= MR

ﬁ" Examplex1+3 Functions of Two Variables

. /XY= y—2 is a function of two variables. Because the
denominator is zero when y = 2, the domain of fis all

(X, y) such that y # 2.

i b. h(x, y) = 4x defines h as a function of x and y. The
~ domain is all ordered pairs of real numbers.

b c.22=x2 + y? does not define z as a function of x and y.
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Domain and Range of f(x, y)

Y

The range of 4 Interior points,
fix, y) is [0, o0). wh;my —x250
Outside, Tll parabola
y—x*<0 1 y—x*=0
is the boundary.
| | > x
—1 0 1

The domain of f{x, v) 5/y— x> consists

of the shaded region and its bounding
parabola y = x2.
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'Graph of f(z,y)

Input can change
in many different directions




' PARTIAL DIFFERENTIATION

| The process of differentiating a function of

| several variables with respect to one of its

| variables while keeping the other variable(s)
fixed is called partial differentiation, and the
iresulting derivative is a partial derivative of the
functlnn
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Line has slope

Graph of f(x,b)







-ectional Derivative

There are infinitely many directional derivatives of a surface
at a given point—one for each direction specified by u, as
shown.

L,

--"l.

The vector u
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Directional Derivatives and Gradients

To determine the slope at a point on a surface, we define
new type of derivative called a Directional Derivative.
And to determine in which direction at that point on that
surface the slope 1s maximum, we mtroduce Gradient.
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Directional Derivative and Gradient

We can now rewrite the directional
derivative as

9 Dyf(x,y) = Vf(x,y) - u

which expresses the directional derivative
in the direction of u as the scalar
projection of the gradient vector onto u.



“EXAMPLE 2

» Find the directional derivative of the function f (x, y) = x2y®
- 4y at the point (2, -1) in the direction of the vectorv=2i
+5J.

Solution: by definition, Vf =i df+j §5+ ;ﬁf

dz
PF=i(2x)?) + j(3x)2 — 4)
at(2-1) = —4i +8j

Directional derivative in the direction of the vector 21+ 5|

F - 31+4| 32
=T IaI = (—4i + &j). e - ans




Movement on the graph

points in the direction of steepest ascent
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