
15
Vector Calculus

15.1 Vector Fields

This chapter is concerned with applying calculus in the context of vector fields. A
two-dimensional vector field is a function f that maps each point (x, y) in R2 to a two-
dimensional vector 〈u, v〉, and similarly a three-dimensional vector field maps (x, y, z) to
〈u, v, w〉. Since a vector has no position, we typically indicate a vector field in graphical
form by placing the vector f(x, y) with its tail at (x, y). Figure 15.1 shows a representation
of the vector field f(x, y) = 〈x/

√
x2 + y2 + 4,−y/

√
x2 + y2 + 4〉. For such a graph to be

readable, the vectors must be fairly short, which is accomplished by using a different scale
for the vectors than for the axes. Such graphs are thus useful for understanding the sizes
of the vectors relative to each other but not their absolute size.

Vector fields have many important applications, as they can be used to represent many
physical quantities: the vector at a point may represent the strength of some force (gravity,
electricity, magnetism) or a velocity (wind speed or the velocity of some other fluid).

We have already seen a particularly important kind of vector field—the gradient. Given
a function f(x, y), recall that the gradient is 〈fx(x, y), fy(x, y)〉, a vector that depends on
(is a function of) x and y. We usually picture the gradient vector with its tail at (x, y),
pointing in the direction of maximum increase. Vector fields that are gradients have some
particularly nice properties, as we will see. An important example is

F =
〈 −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉
,

391



392 Chapter 15 Vector Calculus

−1.6

−1.8

−2.0

1.60.0−1.2 2.0

y

2.0

1.2

1.0

1.2

−1.2

−1.0

−0.8 0.4

0.6

−0.4
−0.2

x

−0.8

0.8

1.8

0.2

−1.6

1.6

0.0

1.4

−2.0

−0.6

−1.4

−0.4

0.8

0.4

Figure 15.1 A vector field.

which points from the point (x, y, z) toward the origin and has length

√
x2 + y2 + z2

(x2 + y2 + z2)3/2
=

1

(
√

x2 + y2 + z2)2
,

which is the reciprocal of the square of the distance from (x, y, z) to the origin—in other
words, F is an “inverse square law”. The vector F is a gradient:

F = ∇ 1√
x2 + y2 + z2

, (15.1)

which turns out to be extremely useful.
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Exercises

Sketch the vector fields; check your work with Maple’s fieldplot command.

1. 〈x, y〉
2. 〈−x,−y〉
3. 〈x,−y〉
4. 〈sin x, cos y〉
5. 〈y, 1/x〉
6. 〈x + 1, x + 3〉
7. Verify equation 15.1.

15.2 Line Integrals

We have so far integrated “over” intervals, areas, and volumes with single, double, and
triple integrals. We now investigate integration over or “along” a curve—“line integrals”
are really “curve integrals”.

As with other integrals, a geometric example may be easiest to understand. Consider
the function f = x + y and the parabola y = x2 in the x-y plane, for 0 ≤ x ≤ 2. Imagine
that we extend the parabola up to the surface f , to form a curved wall or curtain, as in
figure 15.2. What is the area of the surface thus formed? We already know one way to
compute surface area, but here we take a different approach that is more useful for the
problems to come.

As usual, we start by thinking about how to approximate the area. We pick some
points along the part of the parabola we’re interested in, and connect adjacent points by
straight lines; when the points are close together, the length of each line segment will be
close to the length along the parabola. Using each line segment as the base of a rectangle,
we choose the height to be the height of the surface f above the line segment. If we add
up the areas of these rectangles, we get an approximation to the desired area, and in the
limit this sum turns into an integral.

Typically the curve is in vector form, or can easily be put in vector form; in this
example we have v(t) = 〈t, t2〉. Then as we have seen in section 12.3 on arc length,
the length of one of the straight line segments in the approximation is approximately
ds = |v′| dt =

√
1 + 4t2 dt, so the integral is

∫ 2

0

f(t, t2)
√

1 + 4t2 dt =
∫ 2

0

(t + t2)
√

1 + 4t2 dt =
167
48

√
17− 1

12
− 1

64
ln(4 +

√
17).
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Figure 15.2 Approximating the area under a curve. (JA)

This integral of a function along a curve C is often written in abbreviated form as

∫

C

f(x, y) ds.

EXAMPLE 15.1 Compute
∫

C

yex ds where C is the line segment from (1, 2) to (4, 7).

We write the line segment as a vector function: v = 〈1, 2〉 + t〈3, 5〉, 0 ≤ t ≤ 1, or in
parametric form x = 1 + 3t, y = 2 + 5t. Then

∫

C

yex ds =
∫ 1

0

(2 + 5t)e1+3t
√

32 + 52 dt =
16
9

√
34e4 − 1

9

√
34 e.

All of these ideas extend to three dimensions in the obvious way.

EXAMPLE 15.2 Compute
∫

C

x2z ds where C is the line segment from (0, 6,−1) to

(4, 1, 5).

http://www.whitman.edu/mathematics/calculus/live/parabolic_curtain.html
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We write the line segment as a vector function: v = 〈0, 6,−1〉+ t〈4,−5, 6〉, 0 ≤ t ≤ 1,
or in parametric form x = 4t, y = 6− 5t, z = −1 + 6t. Then

∫

C

x2z ds =
∫ 1

0

(4t)2(−1 + 6t)
√

16 + 25 + 36 dt = 16
√

77
∫ 1

0

−t2 + 6t3 dt =
56
3

√
77.

Now we turn to a perhaps more interesting example. Recall that in the simplest case,
the work done by a force on an object is equal to the magnitude of the force times the
distance the object moves; this assumes that the force is constant and in the direction of
motion. We have already dealt with examples in which the force is not constant; now we
are prepared to examine what happens when the force is not parallel to the direction of
motion.

We have already examined the idea of components of force, in example 11.4: the
component of a force F in the direction of a vector v is

F · v
|v|2 v,

the projection of F onto v. The length of this vector, that is, the magnitude of the force
in the direction of v, is

F · v
|v| ,

the scalar projection of F onto v. If an object moves subject to this (constant) force, in
the direction of v, over a distance equal to the length of v, the work done is

F · v
|v| |v| = F · v.

Thus, work in the vector setting is still “force times distance”, except that “times” means
“dot product”.

If the force varies from point to point, it is represented by a vector field F; the dis-
placement vector v may also change, as an object may follow a curving path in two or
three dimensions. Suppose that the path of an object is given by a vector function r(t); at
any point along the path, the (small) tangent vector r′∆t gives an approximation to its
motion over a short time ∆t, so the work done during that time is approximately F · r′∆t;
the total work over some time period is then

∫ t1

t0

F · r′ dt.
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It is useful to rewrite this in various ways at different times. We start with
∫ t1

t0

F · r′ dt =
∫

C

F · dr,

abbreviating r′ dt by dr. Or we can write
∫ t1

t0

F · r′ dt =
∫ t1

t0

F · r′

|r′| |r
′| dt =

∫ t1

t0

F ·T |r′| dt =
∫

C

F ·T ds,

using the unit tangent vector T, abbreviating |r′| dt as ds, and indicating the path of the
object by C. In other words, work is computed using a particular line integral of the form
we have considered. Alternately, we sometimes write

∫

C

F · r′ dt =
∫

C

〈f, g, h〉 · 〈x′, y′, z′〉 dt =
∫

C

f
dx

dt
+ g

dy

dt
+ h

dz

dt
dt

=
∫

C

f dx + g dy + h dz =
∫

C

f dx +
∫

C

g dy +
∫

C

h dz,

and similarly for two dimensions, leaving out references to z.

EXAMPLE 15.3 Suppose an object moves from (−1, 1) to (2, 4) along the path r(t) =
〈t, t2〉, subject to the force F = 〈x sin y, y〉. Find the work done.

We can write the force in terms of t as 〈t sin(t2), t2〉, and compute r′(t) = 〈1, 2t〉, and
then the work is

∫ 2

−1

〈t sin(t2), t2〉 · 〈1, 2t〉 dt =
∫ 2

−1

t sin(t2) + 2t3 dt =
15
2

+
cos(1)− cos(4)

2
.

Alternately, we might write
∫

C

x sin y dx +
∫

C

y dy =
∫ 2

−1

x sin(x2) dx +
∫ 4

1

y dy = −cos(4)
2

+
cos(1)

2
+

16
2
− 1

2

getting the same answer.
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Exercises

1. Compute

Z

C

xy2 ds along the line segment from (1, 2, 0) to (2, 1, 3). ⇒

2. Compute

Z

C

sin x ds along the line segment from (−1, 2, 1) to (1, 2, 5). ⇒

3. Compute

Z

C

z cos(xy) ds along the line segment from (1, 0, 1) to (2, 2, 3). ⇒

4. Compute

Z

C

sin x dx+cos y dy along the top half of the unit circle, from (1, 0) to (−1, 0). ⇒

5. Compute

Z

C

xey dx + x2y dy along the line segment y = 3, 0 ≤ x ≤ 2. ⇒

6. Compute

Z

C

xey dx + x2y dy along the line segment x = 4, 0 ≤ y ≤ 4. ⇒

7. Compute

Z

C

xey dx + x2y dy along the curve x = 3t, y = t2, 0 ≤ t ≤ 1. ⇒

8. Compute

Z

C

xey dx + x2y dy along the curve 〈et, et〉, −1 ≤ t ≤ 1. ⇒

9. Compute

Z

C

〈cos x, sin y〉 · dr along the curve 〈t, t〉, 0 ≤ t ≤ 1. ⇒

10. Compute

Z

C

〈1/xy, 1/(x + y)〉 · dr along the path from (1, 1) to (3, 1) to (3, 6) using straight

line segments. ⇒
11. Compute

Z

C

〈1/xy, 1/(x + y)〉 · dr along the curve 〈2t, 5t〉, 1 ≤ t ≤ 4. ⇒

12. Compute

Z

C

〈1/xy, 1/(x + y)〉 · dr along the curve 〈t, t2〉, 1 ≤ t ≤ 4. ⇒

13. Compute

Z

C

yz dx + xz dy + xy dz along the curve 〈t, t2, t3〉, 0 ≤ t ≤ 1. ⇒

14. Compute

Z

C

yz dx + xz dy + xy dz along the curve 〈cos t, sin t, tan t〉, 0 ≤ t ≤ π. ⇒

15. An object moves from (1, 1) to (4, 8) along the path r(t) = 〈t2, t3〉, subject to the force
F = 〈x2, sin y〉. Find the work done. ⇒

16. An object moves along the line segment from (1, 1) to (2, 5), subject to the force F =
〈x/(x2 + y2), y/(x2 + y2)〉. Find the work done. ⇒

17. An object moves along the parabola r(t) = 〈t, t2〉, 0 ≤ t ≤ 1, subject to the force F =
〈1/(y + 1),−1/(x + 1)〉. Find the work done. ⇒

18. An object moves along the line segment from (0, 0, 0) to (3, 6, 10), subject to the force F =
〈x2, y2, z2〉. Find the work done. ⇒

19. An object moves along the curve r(t) = 〈√t, 1/
√

t, t〉 1 ≤ t ≤ 4, subject to the force F =
〈y, z, x〉. Find the work done. ⇒

20. An object moves from (1, 1, 1) to (2, 4, 8) along the path r(t) = 〈t, t2, t3〉, subject to the force
F = 〈sin x, sin y, sin z〉. Find the work done. ⇒
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21. An object moves from (1, 0, 0) to (−1, 0, π) along the path r(t) = 〈cos t, sin t, t〉, subject to
the force F = 〈y2, y2, xz〉. Find the work done. ⇒

15.3 The Fundamental Theorem of Line Integrals

One way to write the Fundamental Theorem of Calculus (7.3) is:

∫ b

a

f ′(x) dx = f(b)− f(a).

That is, to compute the integral of a derivative f ′ we need only compute the values of f

at the endpoints. Something similar is true for line integrals of a certain form.

THEOREM 15.4 Fundamental Theorem of Line Integrals Suppose a curve C

is given by the vector function r(t), with a = r(a) and b = r(b). Then

∫

C

∇f · dr = f(b)− f(a),

provided that r is sufficiently nice.

Proof.

We write r = 〈x(t), y(t), z(t)〉, so that r′ = 〈x′(t), y′(t), z′(t)〉. Also, we know that
∇f = 〈fx, fy, fz〉. Then

∫

C

∇f · dr =
∫ b

a

〈fx, fy, fz〉 · 〈x′(t), y′(t), z′(t)〉 dt =
∫ b

a

fxx′ + fyy′ + fzz
′ dt.

By the chain rule (see section 13.4) fxx′ + fyy′ + fzz
′ = df/dt, where f in this context

means f(x(t), y(t), z(t)), a function of t. In other words, all we have is

∫ b

a

f ′(t) dt = f(b)− f(a).

In this context, f(a) = f(x(a), y(a), z(a)). Since a = r(a) = 〈x(a), y(a), z(a)〉, we can write
f(a) = f(a)—this is a bit of a cheat, since we are simultaneously using f to mean f(t) and
f(x, y, z), and since f(x(a), y(a), z(a)) is not technically the same as f(〈x(a), y(a), z(a)〉),
but the concepts are clear and the different uses are compatible. Doing the same for b, we
get ∫

C

∇f · dr =
∫ b

a

f ′(t) dt = f(b)− f(a) = f(b)− f(a).
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This theorem, like the Fundamental Theorem of Calculus, says roughly that if we
integrate a “derivative-like function” (f ′ or ∇f) the result depends only on the values of
the original function (f) at the endpoints.

If a vector field F is the gradient of a function, F = ∇f , we say that F is a conserva-
tive vector field. If F is a conservative force field, then the integral for work,

∫
C

F · dr,
is in the form required by the Fundamental Theorem of Line Integrals. This means that
in a conservative force field, the amount of work required to move an object from point a
to point b depends only on those points, not on the path taken between them.

EXAMPLE 15.5 An object moves in the force field

F =
〈 −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉
,

along the curve r = 〈1+ t, t3, t cos(πt)〉 as t ranges from 0 to 1. Find the work done by the
force on the object.

The straightforward way to do this involves substituting the components of r into F,
forming the dot product F ·r′, and then trying to compute the integral, but this integral is
extraordinarily messy, perhaps impossible to compute. But since F = ∇(1/

√
x2 + y2 + z2)

we need only substitute:

∫

C

F · dr =
1√

x2 + y2 + z2

∣∣∣∣∣

(2,1,−1)

(1,0,0)

=
1√
6
− 1.

Another immediate consequence of the Fundamental Theorem involves closed paths.
A path C is closed if it forms a loop, so that traveling over the C curve brings you back to
the starting point. If C is a closed path, we can integrate around it starting at any point
a; since the starting and ending points are the same,

∫

C

∇f · dr = f(a)− f(a) = 0.

For example, in a gravitational field (an inverse square law field) the amount of work
required to move an object around a closed path is zero. Of course, it’s only the net
amount of work that is zero. It may well take a great deal of work to get from point a to
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point b, but then the return trip will “produce” work. For example, it takes work to pump
water from a lower to a higher elevation, but if you then let gravity pull the water back
down, you can recover work by running a water wheel or generator. (In the real world you
won’t recover all the work because of various losses along the way.)

To make use of the Fundamental Theorem of Line Integrals, we need to be able to
spot conservative vector fields F and to compute f so that F = ∇f . Suppose that F =
〈P, Q〉 = ∇f . Then P = fx and Q = fy, and provided that f is sufficiently nice, we know
from Clairaut’s Theorem (13.23) that Py = fxy = fyx = Qx. If we compute Py and Qx

and find that they are not equal, then F is not conservative. If Py = Qx, then, again
provided that F is sufficiently nice, we can be assured that F is conservative. Ultimately,
what’s important is that we be able to find f ; as this amounts to finding anti-derivatives,
we may not always succeed.

EXAMPLE 15.6 Find f so that 〈3 + 2xy, x2 − 3y2〉 = ∇f .
First, note that

∂

∂y
(3 + 2xy) = 2x and

∂

∂x
(x2 − 3y2) = 2x,

so the desired f does exist. This means that fx = 3 + 2xy, so that f = 3x + x2y + g(y);
the first two terms are needed to get 3+2xy, and the g(y) could be any function of y, as it
would disappear upon taking a derivative with respect to x. Likewise, since fy = x2−3y2,
f = x2y − y3 + h(x). The question now becomes, is it possible to find g(y) and h(x) so
that

3x + x2y + g(y) = x2y − y3 + h(x),

and of course the answer is yes: g(y) = −y3, h(x) = 3x. Thus, f = 3x + x2y − y3.
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Exercises

1. Find f so that ∇f = 〈2x + y2, 2y + x2〉, or explain why there is no such f . ⇒
2. Find f so that ∇f = 〈x3,−y4〉, or explain why there is no such f . ⇒
3. Find f so that ∇f = 〈xey, yex〉, or explain why there is no such f . ⇒
4. Find f so that ∇f = 〈y cos x, y sin x〉, or explain why there is no such f . ⇒
5. Find f so that ∇f = 〈y cos x, sin x〉, or explain why there is no such f . ⇒
6. Find f so that ∇f = 〈x2y3, xy4〉, or explain why there is no such f . ⇒
7. Find f so that ∇f = 〈yz, xz, xy〉, or explain why there is no such f . ⇒
8. Let F = 〈yz, xz, xy〉. Find the work done by this force field on an object that moves from

(1, 0, 2) to (1, 2, 3). ⇒
9. Let F = 〈ey, xey + sin z, y cos z〉. Find the work done by this force field on an object that

moves from (0, 0, 0) to (1,−1, 3). ⇒
10. Let

F =

fi −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

fl
.

Find the work done by this force field on an object that moves from (1, 1, 1) to (4, 5, 6). ⇒

15.4 Green's Theorem

We now come to the first of three important theorems that extend the Fundamental The-
orem of Calculus to higher dimensions. (The Fundamental Theorem of Line Integrals has
already done this in one way, but in that case we were still dealing with an essentially
one-dimensional integral.) They all share with the Fundamental Theorem the following
rather vague description: To compute a certain sort of integral over a region, we may do
a computation on the boundary of the region that involves one fewer integrations.

Note that this does indeed describe the Fundamental Theorem of Calculus and the
Fundamental Theorem of Line Integrals: to compute a single integral over an interval, we
do a computation on the boundary (the endpoints) that involves one fewer integrations,
namely, no integrations at all.

THEOREM 15.7 Green’s Theorem If the vector field F = 〈P,Q〉 and the region
D are sufficiently nice, and if C is the boundary of D (C is a closed curve), then

∫∫

D

∂Q

∂x
− ∂P

∂y
dA =

∫

C

P dx + Qdy,

provided the integration on the right is done counter-clockwise around C.
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To indicate that an integral
∫

C

is being done over a closed curve in the counter-

clockwise direction, we usually write
∮

C

. We also use the notation ∂D to mean the

boundary of D oriented in the counterclockwise direction. With this notation,
∮

C

=
∫

∂D

.

We already know one case, not particularly interesting, in which this theorem is true:

If F is conservative, we know that the integral
∮

C

F · dr = 0, because any integral of a

conservative vector field around a closed curve is zero. We also know in this case that
∂P/∂y = ∂Q/∂x, so the double integral in the theorem is simply the integral of the zero
function, namely, 0. So in the case that F is conservative, the theorem says simply that
0 = 0.

EXAMPLE 15.8 We illustrate the theorem by computing both sides of

∫

∂D

x4 dx + xy dy =
∫∫

D

y − 0 dA,

where D is the triangular region with corners (0, 0), (1, 0), (0, 1).
Starting with the double integral:

∫∫

D

y − 0 dA =
∫ 1

0

∫ 1−x

0

y dy dx =
∫ 1

0

(1− x)2

2
dx = − (1− x)3

6

∣∣∣∣
1

0

=
1
6
.

There is no single formula to describe the boundary of D, so to compute the left side
directly we need to compute three separate integrals corresponding to the three sides of
the triangle, and each of these integrals we break into two integrals, the “dx” part and the
“dy” part. The three sides are described by y = 0, y = 1 − x, and x = 0. The integrals
are then

∫

∂D

x4 dx + xy dy =
∫ 1

0

x4 dx +
∫ 0

0

0 dy +
∫ 0

1

x4 dx +
∫ 1

0

(1− y)y dy +
∫ 0

0

0 dx +
∫ 0

1

0 dy

=
1
5

+ 0− 1
5

+
1
6

+ 0 + 0 =
1
6
.

Alternately, we could descibe the three sides in vector form as 〈t, 0〉, 〈1 − t, t〉, and
〈0, 1− t〉. Note that in each case, as t ranges from 0 to 1, we follow the corresponding side
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in the correct direction. Now
∫

∂D

x4 dx + xy dy =
∫ 1

0

t4 + t · 0 dt +
∫ 1

0

−(1− t)4 + (1− t)t dt +
∫ 1

0

0 + 0 dt

=
∫ 1

0

t4 dt +
∫ 1

0

−(1− t)4 + (1− t)t dt =
1
6
.

In this case, none of the integrations are difficult, but the second approach is some-
what tedious because of the necessity to set up three different integrals. In different
circumstances, either of the integrals, the single or the double, might be easier to compute.
Sometimes it is worthwhile to turn a single integral into the corresponding double integral,
sometimes exactly the opposite approach is best.

Here is a clever use of Green’s Theorem: We know that areas can be computed using
double integrals, namely, ∫∫

D

1 dA

computes the area of region D. If we can find P and Q so that ∂Q/∂x− ∂P/∂y = 1, then
the area is also ∫

∂D

P dx + Qdy.

It is quite easy to do this: P = 0, Q = x works, as do P = −y, Q = 0 and P = −y/2, Q =
x/2.

EXAMPLE 15.9 An ellipse centered at the origin, with its two principal axes aligned
with the x and y axes, is given by

x2

a2
+

y2

b2
= 1.

We find the area of the interior of the ellipse via Green’s theorem. To do this we need a
vector equation for the boundary; one such equation is 〈a cos t, b sin t〉, as t ranges from 0
to 2π. We can easily verify this by substitution:

x2

a2
+

y2

b2
=

a2 cos2 t

a2
+

b2 sin2 t

b2
= cos2 t + sin2 t = 1.

Let’s consider the three possibilities for P and Q above: Using 0 and x gives
∮

C

0 dx + x dy =
∫ 2π

0

a cos(t)b cos(t) dt =
∫ 2π

0

ab cos2(t) dt.



404 Chapter 15 Vector Calculus

Using −y and 0 gives

∮

C

−y dx + 0 dy =
∫ 2π

0

−b sin(t)(−a sin(t)) dt =
∫ 2π

0

ab sin2(t) dt.

Finally, using −y/2 and x/2 gives

∮

C

−y

2
dx +

x

2
dy =

∫ 2π

0

−b sin(t)
2

(−a sin(t)) dt +
a cos(t)

2
(b cos(t)) dt

=
∫ 2π

0

ab sin2 t

2
+

ab cos2 t

2
dt =

∫ 2π

0

ab

2
dt = πab.

The first two integrals are not particularly difficult, but the third is very easy, though the
choice of P and Q seems more complicated.
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Figure 15.3 A “standard” ellipse, x2

a2 + y2

b2
= 1.

Proof of Green’s Theorem.

We cannot here prove Green’s Theorem in general, but we can do a special case. We
seek to prove that ∮

C

P dx + Qdy =
∫∫

D

∂Q

∂x
− ∂P

∂y
dA.

It is sufficient to show that
∮

C

P dx =
∫∫

D

−∂P

∂y
dA and

∮

C

Q dy =
∫∫

D

∂Q

∂x
dA,

which we can do if we can compute the double integral in both possible ways, that is, using
dA = dy dx and dA = dx dy.
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For the first equation, we start with

∫∫

D

∂P

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂P

∂y
dy dx =

∫ b

a

P (x, g2(x))− P (x, g1(x)) dx.

Here we have simply used the ordinary Fundamental Theorem of Calculus, since for the
inner integral we are integrating a derivative with respect to y: an antiderivative of ∂P/∂y

with respect to y is simply P (x, y), and then we substitute g1 and g2 for y and subtract.
Now we need to manipulate

∮
C

P dx. The boundary of region D consists of 4 parts,
given by the equations y = g1(x), x = b, y = g2(x), and x = a. On the portions x = b

and x = a, dx = 0 dt, so the corresponding integrals are zero. For the other two portions,
we use the parametric forms x = t, y = g1(t), a ≤ t ≤ b, and x = t, y = g2(t), letting t

range from b to a, since we are integrating counter-clockwise around the boundary. The
resulting integrals give us

∮

C

P dx =
∫ b

a

P (t, g1(t)) dt +
∫ a

b

P (t, g2(t)) dt =
∫ b

a

P (t, g1(t)) dt−
∫ b

a

P (t, g2(t)) dt

=
∫ b

a

P (t, g1(t))− P (t, g2(t)) dt

which is the result of the double integral times −1, as desired.
The equation involving Q is essentially the same, and left as an exercise.

Exercises

1. Compute

Z

∂D

2y dx + 3x dy, where D is described by 0 ≤ x, y ≤ 1. ⇒

2. Compute

Z

∂D

xy dx + xy dy, where D is described by 0 ≤ x, y ≤ 1. ⇒

3. Compute

Z

∂D

e2x+3y dx + exy dy, where D is described by −2 ≤ x ≤ 2, −1 ≤ y ≤ 1. ⇒

4. Compute

Z

∂D

y cos x dx + y sin x dy, where D is described by 0 ≤ x ≤ π/2, 1 ≤ y ≤ 2. ⇒

5. Compute

Z

∂D

x2y dx + xy2 dy, where D is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ x. ⇒

6. Compute

Z

∂D

x
√

y dx +
√

x + y dy, where D is described by 1 ≤ x ≤ 2, 2x ≤ y ≤ 4. ⇒

7. Compute

Z

∂D

(x/y) dx + (2 + 3x) dy, where D is described by 1 ≤ x ≤ 2, 1 ≤ y ≤ x2. ⇒

8. Compute

Z

∂D

sin y dx + sin x dy, where D is described by 0 ≤ x ≤ π/2, x ≤ y ≤ π/2. ⇒
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9. Compute

Z

∂D

x ln y dx, where D is described by 1 ≤ x ≤ 2, ex ≤ y ≤ ex2
. ⇒

10. Compute

Z

∂D

p
1 + x2 dy, where D is described by −1 ≤ x ≤ 1, x2 ≤ y ≤ 1. ⇒

11. Compute

Z

∂D

x2y dx− xy2 dy, where D is described by x2 + y2 ≤ 1. ⇒

12. Compute

Z

∂D

y3 dx + 2x3 dy, where D is described by x2 + y2 ≤ 4. ⇒

13. Finish our proof of Green’s Theorem by showing that

I

C

Q dy =

ZZ

D

∂Q

∂x
dA.

15.5 Divergence and Curl

Divergence and curl are two measurements of vector fields that are very useful in a variety of
applications. Both are most easily understood by thinking of the vector field as representing
a flow of a liquid or gas; that is, each vector in the vector field should be interpreted as a
velocity vector. Roughly speaking, divergence measures the tendency of the fluid to collect
or disperse at a point, and curl measures the tendency of the fluid to swirl around the point.
Divergence is a scalar, that is, a single number, while curl is itself a vector. The magnitude
of the curl measures how much the fluid is swirling, the direction indicates the axis around
which it tends to swirl. These ideas are somewhat subtle in practice, and are beyond
the scope of this course. You can find additional information on the web, for example
at http://www.math.umn.edu/~nykamp/m2374/readings/divcurl/ and in many books
including Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, by H. M.
Schey.

Recall that if f is a function, the gradient of f is given by

∇f =
〈

∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.

A useful mnemonic for this (and for the divergence and curl, as it turns out) is to let

∇ =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
,

that is, we pretend that ∇ is a vector with rather odd looking entries. Recalling that
〈u, v, w〉a = 〈ua, va, wa〉, we can then think of the gradient as

∇f =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
,

http://www.math.umn.edu/~nykamp/m2374/readings/divcurl/
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that is, we simply multiply the f into the vector.
The divergence and curl can now be defined in terms of this same odd vector ∇ by

using the cross product and dot product. The divergence of a vector field F = 〈f, g, h〉 is

∇ · F =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
· 〈f, g, h〉 =

∂f

∂x
+

∂g

∂y
+

∂h

∂z
.

The curl of F is

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣
=

〈
∂h

∂y
− ∂g

∂z
,
∂f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂f

∂y

〉
.

Here are two simple but useful facts about divergence and curl.

THEOREM 15.10 ∇ · (∇× F) = 0.

In words, this says that the divergence of the curl is zero.

THEOREM 15.11 ∇× (∇f) = 0.

That is, the curl of a gradient is the zero vector. Recalling that gradients are conser-
vative vector fields, this says that the curl of a conservative vector field is the zero vector.
Under suitable conditions, it is also true that if the curl of F is 0 then F is conservative.

EXAMPLE 15.12 Let F = 〈ez, 1, xez〉. Then ∇× F = 〈0, ez − ez, 0〉 = 0. Thus, F is
conservative, and we can exhibit this directly by finding the corresponding f .

Since fx = ez, f = xez + g(y, z). Since fy = 1, it must be that gy = 1, so g(y, z) =
y + h(z). Thus f = xez + y + h(z) and

xez = fzxez + 0 + h′(z),

so h′(z) = 0, i.e., h(z) = C, and f = xez + y + C.

We can rewrite Green’s Theorem using these new ideas; these rewritten versions in
turn are closer to some later theorems we will see.

Suppose we write a two dimensional vector field in the form F = 〈P,Q, 0〉, where P

and Q are functions of x and y. Then

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q 0

∣∣∣∣∣∣
= 〈0, 0, Qx − Py〉,
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and so (∇× F) · k = 〈0, 0, Qx − Py〉 · 〈0, 0, 1〉 = Qx − Py. So Green’s Theorem says

∫

∂D

F · dr =
∫

∂D

P dx + Qdy =
∫∫

D

Qx − Py dA =
∫∫

D

(∇× F) · k dA. (15.2)

Roughly speaking, the right-most integral adds up the curl (tendency to swirl) at each
point in the region; the left-most integral adds up the tangential components of the vector
field around the entire boundary. Green’s Theorem says these are equal, or roughly, that
the sum of the “microscopic” swirls over the region is the same as the “macroscopic” swirl
around the boundary.

Next, suppose that the boundary ∂D has a vector form r(t), so that r′(t) is tangent to
the boundary, and T = r′(t)/|r′(t)| is the usual unit tangent vector. Writing r = 〈x(t), y(t)〉
we get

T =
〈x′, y′〉
|r′(t)|

and then

N =
〈y′,−x′〉
|r′(t)|

is a unit vector perpendicular to T, that is, a unit normal to the boundary. Now
∫

∂D

F ·N ds =
∫

∂D

〈P, Q〉 · 〈y
′,−x′〉
|r′(t)| |r

′(t)|dt =
∫

∂D

Py′ dt−Qx′ dt

=
∫

∂D

P dy −Q dx =
∫

∂D

−Qdx + P dy.

So far, we’ve just rewritten the original integral using alternate notation. The last integral
looks just like the left side of Green’s Theorem (15.7) except that P and Q have traded
places and Q has acquired a negative sign. Then applying Green’s Theorem we get

∫

∂D

−Qdx + P dy =
∫∫

D

Px + Qy dA =
∫∫

D

∇ · F dA.

Summarizing the long string of equalities,
∫

∂D

F ·N ds =
∫∫

D

∇ · F dA. (15.3)

Roughly speaking, the first integral adds up the flow across the boundary of the region,
from inside to out, and the second sums the divergence (tendency to spread) at each point
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in the interior. The theorem roughly says that the sum of the “microscopic” spreads is the
same as the total spread across the boundary and out of the region.

Exercises

1. Let F = 〈xy,−xy〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

Z

∂D

F · dr and
Z

∂D

F ·N ds. ⇒

2. Let F = 〈ax2, by2〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

Z

∂D

F · dr and
Z

∂D

F ·N ds. ⇒

3. Let F = 〈ay2, bx2〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ x. Compute

Z

∂D

F · dr and
Z

∂D

F ·N ds. ⇒
4. Let F = 〈sin x cos y, cos x sin y〉 and let D be given by 0 ≤ x ≤ π/2, 0 ≤ y ≤ x. ComputeZ

∂D

F · dr and

Z

∂D

F ·N ds. ⇒

5. Let F = 〈y,−x〉 and let D be given by x2 + y2 ≤ 1. Compute

Z

∂D

F · dr and

Z

∂D

F ·N ds.

⇒
6. Let F = 〈x, y〉 and let D be given by x2 + y2 ≤ 1. Compute

Z

∂D

F · dr and

Z

∂D

F ·N ds. ⇒

15.6 Vector Equations of Surfaces

We have dealt extensively with vector equations for curves, r(t) = 〈x(t), y(t), z(t)〉. A
similar technique can be used to represent surfaces in a way that is more general than the
equations for surfaces we have used so far. Recall that when we use r(t) to represent a
curve, we imagine the vector r(t) with its tail at the origin, and then we follow the head
of the arrow as t changes. The vector “draws” the curve through space as t varies.

Suppose we instead have a vector function of two variables,

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.

As both u and v vary, we again imagine the vector r(u, v) with its tail at the origin, and
its head sweeps out a surface in space. A useful analogy is the technology of CRT video
screens, in which an electron gun fires electrons in the direction of the screen. The gun’s
direction sweeps horizontally and vertically to “paint” the screen with the desired image.
In practice, the gun moves horizontally through an entire line, then moves vertically to the
next line and repeats the operation. In the same way, it can be useful to imagine fixing a
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value of v and letting r(u, v) sweep out a curve as u changes. Then v can change a bit, and
r(u, v) sweeps out a new curve very close to the first. Put enough of these curves together
and they form a surface.

EXAMPLE 15.13 Consider the function r(u, v) = 〈v cosu, v sin u, v〉. For a fixed value
of v, as u varies from 0 to 2π, this traces a circle in space at height v above the x-y
plane and with radius v. Put lots and lots of these together,and they form a cone, as in
figure 15.4.
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2y 2
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2y 2

Figure 15.4 Tracing a surface.

EXAMPLE 15.14 Let r = 〈v cos u, v sin u, u〉. If v is constant, the resulting curve is a
helix (as in figure 12.1). If u is constant, the resulting curve is a straight line at height u

in the direction u radians from the positive x axis. Note in figure 15.5 how the helixes and
the lines both paint the same surface in a different way.

This technique allows us to represent many more surfaces than previously.

EXAMPLE 15.15 The curve given by

r = 〈(2 + cos(3u/2)) cos u, (2 + cos(3u/2)) sin u, sin(3u/2)〉

is called a trefoil knot. Recall that from the vector equation of the curve we can compute
the unit tangent T, the unit normal N, and the binormal vector B = T ×N; you may
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Figure 15.5 Tracing a surface. (JA)

want to review section 12.3. The binormal is perpendicular to both T and N; one way to
interpret this is that N and B define a plane perpendicular to T, that is, perpendicular to
the curve; since N and B are perpendicular to each other, they can function just as i and
j do for the x-y plane. So, for example, c(v) = N cos v + B sin v is a vector equation for
a unit circle in a plane perpendicular to the curve described by r, except that the usual
interpretation of c would put its center at the origin. We can fix that simply by adding c
to the original r: let f = r(u) + c(v). For a fixed u this draws a circle around the point
r(u); as u varies we get a sequence of such circles around the curve r, that is, a tube of
radius 1 with r at its center. We can easily change the radius; for example r(u) + ac(v)
gives the tube radius a; we can make the radius vary as we move along the curve with
r(u) + g(u)c(v), where g(u) is a function of u. As shown in figure 15.6, it is hard to see
that the plain knot is knotted; the tube makes the structure apparent. Of course, there is
nothing special about the trefoil knot in this example; we can put a tube around (almost)
any curve in the same way.

We have previously examined surfaces given in the form f(x, y). It is sometimes
useful to represent such surfaces in the more general vector form, which is quite easy:
r(u, v) = 〈u, v, f(u, v)〉. The names of the variables are not important of course; instead
of disguising x and y, we could simply write r(x, y) = 〈x, y, f(x, y)〉.

We have also previously dealt with surfaces that are not functions of x and y; many
of these are easy to represent in vector form. One common type of surface that cannot be
represented as z = f(x, y) is a surface given by an equation involving only x and y. For
example, x + y = 1 and y = x2 are “vertical” surfaces. For every point (x, y) in the plane
that satisfies the equation, the point (x, y, z) is on the surface, for every value of z. Thus,

http://www.whitman.edu/mathematics/calculus/live/helical_ramp.html
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Figure 15.6 Tubes around a trefoil knot, with radius 1/2 and 3 cos(u)/4. (JA)

a corresponding vector form for the surface is something like 〈f(u), g(u), v〉; for example,
x + y = 1 becomes 〈u, 1− u, v〉 and y = x2 becomes 〈u, u2, v〉.

Yet another sort of example is the sphere, say x2 +y2 +z2 = 1. This cannot be written
in the form z = f(x, y), but it is easy to write in vector form; indeed this particular
surface is much like the cone, since it has circular cross-sections, or we can think of it as
a tube around a portion of the z-axis, with a radius that varies depending on where along
the axis we are. One vector expression for the sphere is 〈√1− v2 cos u,

√
1− v2 sin u, v〉—

this emphasizes the tube structure, as it is naturally viewed as drawing a circle of radius√
1− v2 around the z-axis at height v. We could also take a cue from spherical coordinates,

and write 〈sin u cos v, sin u sin v, cos u〉, where in effect u and v are φ and θ in disguise.
It is quite simple in Maple to plot any surface for which you have a vector represen-

tation. Using different vector functions sometimes gives different looking plots, because
Maple in effect draws the surface by holding one variable constant and then the other. For
example, you might have noticed in figure 15.5 that the curves in the two right-hand graphs
are superimposed on the left-hand graph; the graph of the surface is just the combination
of the two sets of curves, with the spaces filled in with color.

Here’s a simple but striking example: the plane x + y + z = 1 can be represented
quite naturally as 〈u, v, 1− u− v〉. But we could also think of painting the same plane by
choosing a particular point on the plane, say (1, 0, 0), and then drawing circles or ellipses
(or any of a number of other curves) as if that point were the origin in the plane. For
example, 〈1− v cosu− v sin u, v sin u, v cos u〉 is one such vector function. Note that while
it may not be obvious where this came from, it is quite easy to see that the sum of the x,

http://www.whitman.edu/mathematics/calculus/live/trefoil.html
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Figure 15.7 Two representations of the same plane. (JA)

y, and z components of the vector is always 1. Maple’s renderings of the plane using these
two functions are shown in figure 15.7.

Suppose we know that a plane contains a particular point (x0, y0, z0) and that two
vectors u = 〈u0, u1, u2〉 and v = 〈v0, v1, v2〉 are parallel to the plane but not to each other.
We know how to get an equation for the plane in the form ax + by + cz = d, by first
computing u× v. It’s even easier to get a vector equation:

r(u, v) = 〈x0, y0, z0〉+ uu + vv.

The first vector gets to the point (x0, y0, z0) and then by varying u and v, uu+ vv gets to
every point in the plane.

Returning to x + y + z = 1, the points (1, 0, 0), (0, 1, 0), and (0, 0, 1) are all on the
plane. By subtracting coordinates we see that 〈−1, 0, 1〉 and 〈−1, 1, 0〉 are parallel to the
plane, so a third vector form for this plane is

〈1, 0, 0〉+ u〈−1, 0, 1〉+ v〈−1, 1, 0〉 = 〈1− u− v, v, u〉.

This is clearly quite similar to the first form we found.
We have already seen (section 14.4) how to find the area of a surface when it is defined

in the form f(x, y). Finding the area when the surface is given as a vector function is very

http://www.whitman.edu/mathematics/calculus/live/two_planes.html
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similar. Looking at the plots of surfaces we have just seen, it is evident that the two sets
of curves that fill out the surface divide it into a grid, and that the spaces in the grid are
approximately parallelograms. As before this is the key: we can write down the area of a
typical little parallelogram and add them all up with an integral.

Suppose we want to approximate the area of the surface r(u, v) near r(u0, v0). The
functions r(u, v0) and r(u0, v) define two curves that intersect at r(u0, v0). The deriva-
tives of r give us vectors tangent to these two curves: ru(u0, v0) and rv(u0, v0), and then
ru(u0, v0) du and rv(u0, v0) dv are two small tangent vectors, whose lengths can be used
as the lengths of the sides of an approximating parallelogram. Finally, the area of this
parallelogram is |ru × rv| du dv and so the total surface area is

∫ b

a

∫ d

c

|ru × rv| du dv.

EXAMPLE 15.16 We find the area of the surface 〈v cosu, v sinu, u〉 for 0 ≤ u ≤ π

and 0 ≤ v ≤ 1; this is a portion of the helical surface in figure 15.5. We compute
ru = 〈−v sin u, v cosu, 1〉 and rv = 〈cos u, sinu, 0〉. The cross product of these two vectors
is 〈sin u,− cosu, v〉 with length

√
1 + v2, and the surface area is

∫ π

0

∫ 1

0

√
1 + v2 dv du =

π
√

2
2

+
π ln(

√
2 + 1)

2
.

Exercises

1. Find the area of the portion of x + 2y + 4z = 10 in the first octant. ⇒
2. Find the area of the portion of 2x + 4y + z = 0 inside x2 + y2 = 1. ⇒
3. Find the area of z = x2 + y2 that lies below z = 1. ⇒
4. Find the area of z =

p
x2 + y2 that lies below z = 2. ⇒

5. Find the area of the portion of x2 + y2 + z2 = a2 that lies in the first octant. ⇒
6. Find the area of the portion of x2 + y2 + z2 = a2 that lies above x2 + y2 ≤ b2. ⇒
7. Find the area of z = x2 − y2 that lies inside x2 + y2 = a2. ⇒
8. Find the area of z = xy that lies inside x2 + y2 = a2. ⇒
9. Find the area of x2 + y2 + z2 = a2 that lies above the interior of the circle given in polar

coordinates by r = a cos θ. ⇒
10. Find the area of the cone z = k

p
x2 + y2 that lies above the interior of the circle given in

polar coordinates by r = a cos θ. ⇒
11. Find the area of the plane z = ax + by + c that lies over a region D with area A. ⇒
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12. Find the area of the cone z = k
p

x2 + y2 that lies over a region D with area A. ⇒
13. Find the area of the cylinder x2 + z2 = a2 that lies inside the cylinder x2 + y2 = a2. ⇒
14. The surface f(x, y) can be represented with the vector function 〈x, y, f(x, y)〉. Set up the

surface area integral using this vector function and compare to the integral of section 14.4.

15.7 Surface Integrals

In the integral for surface area,

∫ b

a

∫ d

c

|ru × rv| du dv,

the integrand |ru×rv| du dv is the area of a tiny parallelogram, that is, a very small surface
area, so it is reasonable to abbreviate it dS; then a shortened version of the integral is

∫∫

D

1 · dS.

We have already seen that if D is a region in the plane, the area of D may be computed
with ∫∫

D

1 · dA,

so this is really quite familiar, but the dS hides a little more detail than does dA.
Just as we can integrate functions f(x, y) over regions in the plane, using

∫∫

D

f(x, y) dA,

so we can compute integrals over surfaces in space, using

∫∫

D

f(x, y, z) dS.

In practice this means that we have a vector function r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 for
the surface, and the integral we compute is

∫ b

a

∫ d

c

f(x(u, v), y(u, v), z(u, v))|ru × rv| du dv.
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That is, we express everything in terms of u and v, and then we can do an ordinary double
integral.

EXAMPLE 15.17 Suppose a thin object occupies the upper hemisphere of x2 + y2 +
z2 = 1 and has density σ(x, y, z) = z. Find the mass and center of mass of the object.
(Note that the object is just a thin shell; it does not occupy the interior of the hemisphere.)

We write the hemisphere as r(φ, θ) = 〈cos θ sin φ, sin θ sin φ, cos φ〉, 0 ≤ φ ≤ π/2 and
0 ≤ θ ≤ 2π. So rθ = 〈− sin θ sin φ, cos θ sin φ, 0〉 and rφ = 〈cos θ cos φ, sin θ cosφ,− sin φ〉.
Then

rθ × rφ = 〈− cos θ sin2 φ,− sin θ sin2 φ,− cos φ sin φ〉
and

|rθ × rφ| = | sin φ| = sin φ,

since we are interested only in 0 ≤ φ ≤ π/2. Finally, the density is z = cos φ and the
integral for mass is ∫ 2π

0

∫ π/2

0

cos φ sin φdφ dθ = π.

By symmetry, the center of mass is clearly on the z-axis, so we only need to find the
z-coordinate of the center of mass. The moment around the x-y plane is

∫ 2π

0

∫ π/2

0

z cosφ sin φdφ dθ =
∫ 2π

0

∫ π/2

0

cos2 φ sin φdφ dθ =
2π

3
,

so the center of mass is at (0, 0, 2/3).

Now suppose that F is a vector field; imagine that it represents the velocity of some
fluid at each point in space. We would like to measure how much fluid is passing through
a surface D, the flux across D. As usual, we imagine computing the flux across a very
small section of the surface, with area dS, and then adding up all such small fluxes over D

with an integral. Suppose that vector N is a unit normal to the surface at a point; F ·N
is the scalar projection of F onto the direction of N, so it measures how fast the fluid is
moving across the surface. In one unit of time the fluid moving across the surface will fill a
volume of F ·N dS, which is therefore the rate at which the fluid is moving across a small
patch of the surface. Thus, the total flux across D is

∫∫

D

F ·N dS =
∫∫

D

F · dS,
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defining dS = N dS. As usual, certain conditions must be met for this to work out; chief
among them is the nature of the surface. As we integrate over the surface, we must choose
the normal vectors N in such a way that they point “the same way” through the surface.
For example, if the surface is roughly horizontal in orientation, we might want to measure
the flux in the “upwards” direction, or if the surface is closed, like a sphere, we might want
to measure the flux “outwards” across the surface. In the first case we would choose N to
have positive z component, in the second we would make sure that N points away from the
origin. Unfortunately, there are surfaces that are not orientable: they have only one side,
so that it is not possible to choose the normal vectors to point in the “same way” through
the surface. The most famous such surface is the Möbius strip shown in figure 15.8. It is
quite easy to make such a strip with a piece of paper and some tape. If you have never
done this, it is quite instructive; in particular, you should draw a line down the center of
the strip until you return to your starting point. No matter how unit normal vectors are
assigned to the points of the Möbius strip, there will be normal vectors very close to each
other pointing in opposite directions.

Figure 15.8 A Möbius strip. (JA)

http://www.whitman.edu/mathematics/calculus/live/moebius.html
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Assuming that the quantities involved are well behaved, however, the flux of the vector
field across the surface r(u, v) is

∫∫

D

F ·N dS =
∫∫

D

F · ru × rv

|ru × rv| |ru × rv| dA =
∫∫

D

F · (ru × rv) dA.

In practice, we may have to use rv× ru or even something a bit more complicated to make
sure that the normal vector points in the desired direction.

EXAMPLE 15.18 Compute the flux of F = 〈x, y, z4〉 across the cone z =
√

x2 + y2,
0 ≤ z ≤ 1, in the downward direction.

We write the cone as a vector function: r = 〈v cosu, v sin u, v〉, 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1. Then ru = 〈−v sin u, v cos u, 0〉 and rv = 〈cosu, sin u, 1〉 and ru × rv =
〈v cos u, v sin u,−v〉. The third coordinate −v is negative, which is exactly what we desire,
that is, the normal vector points down through the surface. Then

∫ 2π

0

∫ 1

0

〈x, y, z4〉 · 〈v cosu, v sinu,−v〉 dv du =
∫ 2π

0

∫ 1

0

xv cos u + yv sin u− z4v dv du

=
∫ 2π

0

∫ 1

0

v2 cos2 u + v2 sin2 u− v5 dv du

=
∫ 2π

0

∫ 1

0

v2 − v5 dv du =
π

3
.

Exercises

1. Find the center of mass of an object that occupies the upper hemisphere of x2 + y2 + z2 = 1
and has density x2 + y2. ⇒

2. Find the center of mass of an object that occupies the surface z = xy, 0 ≤ x, y ≤ 1, and has
density

p
1 + x2 + y2. ⇒

3. Find the centroid of the surface of a right circular cone of height h and base radius r, not
including the base. ⇒

4. Evaluate

ZZ

D

〈2,−3, 4〉 ·N dS, where D is given by z = x2 + y2, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

oriented up. ⇒
5. Evaluate

ZZ

D

〈x, y, 3〉 ·N dS, where D is given by z = 3x− 5y, 1 ≤ x ≤ 2, 0 ≤ y ≤ 2, oriented

up. ⇒
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6. Evaluate

ZZ

D

〈x, y,−2〉 ·N dS, where D is given by z = 1− x2− y2, x2 + y2 ≤ 1, oriented up.

⇒
7. Evaluate

ZZ

D

〈xy, yz, zx〉 ·N dS, where D is given by z = x + y2 + 2, 0 ≤ x ≤ 1, x ≤ y ≤ 1,

oriented up. ⇒
8. Evaluate

ZZ

D

〈ex, ey, z〉 ·N dS, where D is given by z = xy, 0 ≤ x ≤ 1, −x ≤ y ≤ x, oriented

up. ⇒
9. Evaluate

ZZ

D

〈xz, yz, z〉 ·N dS, where D is given by z = a2 − x2 − y2, x2 + y2 ≤ b2, oriented

up. ⇒

15.8 Stokes's Theorem

Recall that one version of Green’s Theorem (see equation 15.2) is

∫

∂D

F · dr =
∫∫

D

(∇× F) · k dA.

Here D is a region in the x-y plane and k is a unit normal to D at every point. If D is
instead an orientable surface in space, there is an obvious way to alter this equation, and
it turns out still to be true:

THEOREM 15.19 Stokes’s Theorem Provided that the quantities involved are
sufficiently nice, and in particular if D is orientable,

∫

∂D

F · dr =
∫∫

D

(∇× F) ·N dS,

if ∂D is oriented counter-clockwise relative to N.

Note how little has changed: k becomes N, a unit normal to the surface, and dA

becomes dS, since this is now a general surface integral. The phrase “counter-clockwise
relative to N” means that if we take the direction of N to be “up”, then we go around the
boundary counter-clockwise when viewed from “above”.

EXAMPLE 15.20 Let F = 〈exy cos z, x2z, xy〉 and the surface D be x =
√

1− y2 − z2,
oriented in the positive x direction. It quickly becomes apparent that the surface integral
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in Stokes’s Theorem is intractable, so we try the line integral. The boundary of D is the
unit circle in the y-z plane, r = 〈0, cos u, sin u〉, 0 ≤ u ≤ 2π. The integral is

∫ 2π

0

〈exy cos z, x2z, xy〉 · 〈0,− sin u, cosu〉 du =
∫ 2π

0

0 du = 0,

because x = 0.

An interesting consequence of Stokes’s Theorem is that if D and E are two orientable
surfaces with the same boundary, then

∫∫

D

(∇× F) ·N dS =
∫

∂D

F · dr =
∫

∂E

F · dr =
∫∫

E

(∇× F) ·N dS.

Sometimes both of the integrals

∫∫

D

(∇× F) ·N dS and
∫

∂D

F · dr

are difficult, but you may be able to find a second surface E so that

∫∫

E

(∇× F) ·N dS

has the same value but is easier to compute.

EXAMPLE 15.21 In the previous example, the line integral was easy to compute.
But we might also notice that another surface E with the same boundary is the flat disk
y2 + z2 ≤ 1. The unit normal N for this surface is simply i = 〈1, 0, 0〉. We compute the
curl:

∇× F = 〈x− x2,−exy sin z − y, 2xz − xexy cos z〉.
Since x = 0 everywhere on the surface,

(∇× F) ·N = 〈0,−exy sin z − y, 2xz − xexy cos z〉 · 〈1, 0, 0〉 = 0,

so the surface integral is ∫∫

E

0 dS = 0,
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as before. In this case, of course, it is still somewhat easier to compute the line integral,
avoiding ∇× F entirely.

EXAMPLE 15.22 Let F = 〈−y2, x, z2〉, and let the curve C be the intersection of the
cylinder x2 + y2 = 1 with the plane y + z = 2, oriented counter-clockwise when viewed

from above. We compute
∫

C

F · dr in two ways.

First we do it directly: a vector function for C is r = 〈cosu, sin u, 2 − sin u〉, so
r′ = 〈− sin u, cos u,− cos u〉, and the integral is then

∫ 2π

0

y2 sin u + x cos u− z2 cos u du =
∫ 2π

0

sin3 u + cos2 u− (2− sin u)2 cosu du = π.

To use Stokes’s Theorem, we pick a surface with C as the boundary; the simplest
such surface is that portion of the plane y + z = 2 inside the cylinder. This has vector
equation r = 〈v cos u, v sin u, 2 − v sin u〉. We compute ru = 〈−v sin u, v cosu,−v cos u〉,
rv = 〈cos u, sinu,− sin u〉, and ru × rv = 〈0,−v,−v〉. To match the orientation of C we
need to use the normal 〈0, v, v〉. The curl of F is 〈0, 0, 1+2y〉 = 〈0, 0, 1+2v sin u〉, and the
surface integral from Stokes’s Theorem is

∫ 2π

0

∫ 1

0

(1 + 2v sin u)v dv du = π.

In this case the surface integral was more work to set up, but the resulting integral is
somewhat easier.

Proof of Stokes’s Theorem.

We can prove here a special case of Stokes’s Theorem, which perhaps not too surpris-
ingly uses Green’s Theorem.

Suppose the surface D of interest can be expressed in the form z = g(x, y), and let
F = 〈P, Q,R〉. Using the vector function r = 〈x, y, g(x, y)〉 for the surface we get the
surface integral

∫∫

D

∇× F · dS =
∫∫

E

〈Ry −Qz, Pz −Rx, Qx − Py〉 · 〈−gx,−gy, 1〉 dA

=
∫∫

E

−Rygx + Qzgx − Pzgy + Rxgy + Qx − Py dA.

Here E is the region in the x-y plane directly below the surface D.
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For the line integral, we need a vector function for ∂D. If 〈x(t), y(t)〉 is a vector
function for ∂E then we may use r(t) = 〈x(t), y(t), g(x(t), y(t))〉 to represent ∂D. Then

∫

∂D

F · dr =
∫ b

a

P
dx

dt
+ Q

dy

dt
+ R

dz

dt
dt =

∫ b

a

P
dx

dt
+ Q

dy

dt
+ R

(
∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)
dt.

using the chain rule for dz/dt. Now we continue to manipulate this:

∫ b

a

P
dx

dt
+ Q

dy

dt
+R

(
∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)
dt

=
∫ b

a

[(
P + R

∂z

∂x

)
dx

dt
+

(
Q + R

∂z

∂y

)
dy

dt

]
dt

=
∫

∂E

(
P + R

∂z

∂x

)
dx +

(
Q + R

∂z

∂y

)
dy,

which now looks just like the line integral of Green’s Theorem, except that the functions
P and Q of Green’s Theorem have been replaced by the more complicated P + R(∂z/∂x)
and Q + R(∂z/∂y). We can apply Green’s Theorem to get

∫

∂E

(
P + R

∂z

∂x

)
dx +

(
Q + R

∂z

∂y

)
dy =

∫∫

E

∂

∂x

(
Q + R

∂z

∂y

)
− ∂

∂y

(
P + R

∂z

∂x

)
dA.

Now we can use the chain rule again to evaluate the derivatives inside this integral, and it
becomes

∫∫

E

Qx + Qzgx + Rxgy + Rzgxgy + Rgyx − (Py + Pzgy + Rygx + Rzgygx + Rgxy) dA

=
∫∫

E

Qx + Qzgx + Rxgy − Py − Pzgy −Rygx dA,

which is the same as the expression we obtained for the surface integral.
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Exercises

1. Let F = 〈z, x, y〉. The plane z = 2x + 2y − 1 and the paraboloid z = x2 + y2 intersect in a
closed curve. Stokes’s Theorem implies thatZZ

D1

(∇× F) ·N dS =

I

C

F · dr =

ZZ

D2

(∇× F) ·N dS,

where the line integral is computed over the intersection C of the plane and the paraboloid,
and the two surface integrals are computed over the portions of the two surfaces that have
boundary C (provided, of course, that the orientations all match). Compute all three inte-
grals. ⇒

2. Let D be the portion of z = 1 − x2 − y2 above the x-y plane, oriented up, and let F =

〈xy2,−x2y, xyz〉. Compute

ZZ

D

(∇× F) ·N dS. ⇒

3. Let D be the portion of z = 2x + 5y inside x2 + y2 = 1, oriented up, and let F = 〈y, z,−x〉.
Compute

Z

∂D

F · dr. ⇒
4. Let D be the portion of z = px + qy + r over a region in the x-y plane that has area A,

oriented up, and let F = 〈ax + by + cz, ax + by + cz, ax + by + cz〉. Compute

Z

∂D

F · dr. ⇒
5. Let D be any surface and let F = 〈P (x), Q(y), R(z)〉 (P depends only on x, Q only on y,

and R only on z). Show that

Z

∂D

F · dr = 0.

6. Show that

Z

C

f∇g + g∇f · dr = 0, where r describes a closed curve C to which Stokes’s

Theorem applies.

15.9 The Divergence Theorem

The third version of Green’s Theorem (equation 15.3) we saw was:

∫

∂D

F ·N ds =
∫∫

D

∇ · F dA.

With minor changes this turns into another equation, the Divergence Theorem:

THEOREM 15.23 Divergence Theorem Under suitable conditions, if E is a
region of three dimensional space and D is its boundary surface, oriented outward, then

∫∫

D

F ·N dS =
∫∫∫

E

∇ · F dV.
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Proof of the Divergence Theorem.

Again this theorem is too difficult to prove here, but a special case is easier. In the
proof of a special case of Green’s Theorem, we needed to know that we could describe the
region of integration in both possible orders, so that we could set up one double integral
using dx dy and another using dy dx. Similarly here, we need to be able to describe the
three-dimensional region E in different ways.

We start by rewriting the triple integral:
∫∫∫

E

∇ · F dV =
∫∫∫

E

(Px + Qy + Rz) dV =
∫∫∫

E

Px dV +
∫∫∫

E

Qy dV +
∫∫∫

E

Rz dV.

The double integral may be rewritten:
∫∫

D

F ·N dS =
∫∫

D

(P i+Qj+Rk) ·N dS =
∫∫

D

P i ·N dS +
∫∫

D

Qj ·N dS +
∫∫

D

Rk ·N dS.

To prove that these give the same value it is sufficient to prove that
∫∫

D

P i ·N dS =
∫∫∫

E

Px dV,

∫∫

D

Qj ·N dS =
∫∫∫

E

Qy dV, and

∫∫

D

Rk ·N dS =
∫∫∫

E

Rz dV.

(15.4)

Not surprisingly, these are all pretty much the same; we’ll do the first one.
We set the triple integral up with dx innermost:

∫∫∫

E

Px dV =
∫∫

B

∫ g2(y,z)

g1(y,z)

Px dx dA =
∫∫

B

P (g2(y, z), y, z)− P (g1(y, z), y, z) dA,

where B is the region in the y-z plane over which we integrate. The boundary surface of
E consists of a “top” x = g2(y, z), a “bottom” x = g1(y, z), and a “wrap-around side”
that is vertical to the y-z plane. To integrate over the entire boundary surface, we can
integrate over each of these (top, bottom, side) and add the results. Over the side surface,
the vector N is perpendicular to the vector i, so

∫∫

side

P i ·N dS =
∫∫

side

0 dS = 0.
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Thus, we are left with just the surface integral over the top plus the surface integral
over the bottom. For the top, we use the vector function r = 〈g2(y, z), y, z〉 which gives
ry × rz = 〈1,−g2y,−g2z〉; the dot product of this with i = 〈1, 0, 0〉 is 1. Then

∫∫

top

P i ·N dS =
∫∫

B

P (g2(y, z), y, z) dA.

In almost identical fashion we get
∫∫

bottom

P i ·N dS = −
∫∫

B

P (g1(y, z), y, z) dA,

where the negative sign is needed to make N point in the negative x direction. Now
∫∫

D

P i ·N dS =
∫∫

B

P (g2(y, z), y, z) dA−
∫∫

B

P (g1(y, z), y, z) dA,

which is the same as the value of the triple integral above.

EXAMPLE 15.24 Let F = 〈2x, 3y, z2〉, and consider the three-dimensional volume
inside the cube with faces parallel to the principal planes and opposite corners at (0, 0, 0)
and (1, 1, 1). We compute the two integrals of the divergence theorem.

The triple integral is the easier of the two:

∫ 1

0

∫ 1

0

∫ 1

0

2 + 3 + 2z dx dy dz = 6.

The surface integral must be separated into six parts, one for each face of the cube. One
face is z = 0 or r = 〈u, v, 0〉, 0 ≤ u, v ≤ 1. Then ru = 〈1, 0, 0〉, rv = 〈0, 1, 0〉, and
ru × rv = 〈0, 0, 1〉. We need this to be oriented downward (out of the cube), so we use
〈0, 0,−1〉 and the corresponding integral is

∫ 1

0

∫ 1

0

−z2 du dv =
∫ 1

0

∫ 1

0

0 du dv = 0.

Another face is y = 1 or r = 〈u, 1, v〉. Then ru = 〈1, 0, 0〉, rv = 〈0, 0, 1〉, and ru× rv =
〈0,−1, 0〉. We need a normal in the positive y direction, so we convert this to 〈0, 1, 0〉, and
the corresponding integral is

∫ 1

0

∫ 1

0

3y du dv =
∫ 1

0

∫ 1

0

3 du dv = 3.
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The remaining four integrals have values 0, 0, 2, and 1, and the sum of these is 6, in
agreement with the triple integral.

EXAMPLE 15.25 Let F = 〈x3, y3, z2〉, and consider the cylindrical volume x2+y2 ≤ 9,
0 ≤ z ≤ 2. The triple integral (using cylindrical coordinates) is

∫ 2π

0

∫ 3

0

∫ 2

0

(3r2 + 2z)r dz dr dθ = 279π.

For the surface we need three integrals. The top of the cylinder can be represented
by r = 〈v cosu, v sin u, 2〉; ru × rv = 〈0, 0,−v〉, which points down into the cylinder, so we
convert it to 〈0, 0, v〉. Then

∫ 2π

0

∫ 3

0

〈v3 cos3 u, v3 sin3 u, 4〉 · 〈0, 0, v〉 dv du =
∫ 2π

0

∫ 3

0

4v dv du = 36π.

The bottom is r = 〈v cos u, v sin u, 0〉; ru × rv = 〈0, 0,−v〉 and

∫ 2π

0

∫ 3

0

〈v3 cos3 u, v3 sin3 u, 0〉 · 〈0, 0,−v〉 dv du =
∫ 2π

0

∫ 3

0

0 dv du = 0.

The side of the cylinder is r = 〈3 cos u, 3 sin u, v〉; ru × rv = 〈3 cos u, 3 sin u, 0〉 which does
point outward, so

∫ 2π

0

∫ 2

0

〈27 cos3 u, 27 sin3 u, v2〉 · 〈3 cos u, 3 sin u, 0〉 dv du

=
∫ 2π

0

∫ 2

0

81 cos4 u + 81 sin4 u dv du = 243π.

The total surface integral is thus 36π + 0 + 243π = 279π.
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Exercises

1. Let E be the volume described by 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, and F = 〈x2, y2, z2〉.
Compute

ZZ

∂E

F ·N dS. ⇒

2. Let E be the volume described by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and F =

〈2xy, 3xy, zex+y〉. Compute

ZZ

∂E

F ·N dS. ⇒

3. Let E be the volume described by 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x + y, and F = 〈x, 2y, 3z〉.
Compute

ZZ

∂E

F ·N dS. ⇒

4. Let E be the volume described by x2 + y2 + z2 ≤ 4, and F = 〈x3, y3, z3〉. Compute

ZZ

∂E

F ·

N dS. ⇒
5. Let E be the hemisphere described by 0 ≤ z ≤

p
1− x2 − y2, and

F = 〈
p

x2 + y2 + z2,
p

x2 + y2 + z2,
p

x2 + y2 + z2〉. Compute

ZZ

∂E

F ·N dS. ⇒

6. Let E be the volume described by x2 + y2 ≤ 1, 0 ≤ z ≤ 4, and F = 〈xy2, yz, x2z〉. ComputeZZ

∂E

F ·N dS. ⇒

7. Let E be the solid cone above the x-y plane and inside z = 1 −
p

x2 + y2, and F =

〈x cos2 z, y sin2 z,
p

x2 + y2z〉. Compute

ZZ

∂E

F ·N dS. ⇒

8. Prove the other two equations in the display 15.4.
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14.2.9.
√

3/4 + π/6

14.3.1. x̄ = ȳ = 2/3

14.3.2. x̄ = 4/5, ȳ = 8/15

14.3.3. x̄ = 0, ȳ = 3π/16

14.3.4. x̄ = 0, ȳ = 16/(15π)

14.4.1. πa
√

h2 + a2

14.4.2. πa2
√

m2 + 1

14.4.3.
√

3/2

14.4.4. π
√

2

14.4.5. π
√

2/8

14.4.6. π/2− 1

14.5.1. 11/24

14.5.2. 623/60

14.5.3. −3e2/4 + 2e− 3/4

14.5.4. 1/20

14.5.5. π/48

14.5.6. 11/84

14.5.7. 151/60

14.5.9. 32

14.5.10. 64/3

14.5.11. x̄ = ȳ = 0, z̄ = 16/15

14.5.12. x̄ = ȳ = 0, z̄ = 1/3

14.6.1. π/12

14.6.2. 5π/4

14.6.3. 0

14.6.4. 5π/4

14.6.5. 4/5

14.6.6. 256π/15

14.6.7. 4π2

14.6.8. πkh2a2/12

14.6.9. πkha3/6

14.6.10. π2/4

14.6.11. 4π/5

14.6.12. 124π/5

14.7.2. 0

14.7.3. 2/3

14.7.6. 32(
√

2 + ln(1 +
√

2))/3

14.7.7. 3 cos(1)− 3 cos(4)

15.2.1. 13
√

11/4

15.2.2. 0

15.2.3. 3 sin(4)/2

15.2.4. 0

15.2.5. 2e3

15.2.6. 128

15.2.7. (9e− 3)/2

15.2.8. ee+1 − ee − e1/e−1 + e1/e + e4/4 −
e−4/4

15.2.9. 1 + sin(1)− cos(1)

15.2.10. 3 ln 3− 2 ln 2

15.2.11. 3/20 + 10 ln(2)/7

15.2.12. 2 ln 5− 2 ln 2 + 15/32

15.2.13. 1

15.2.14. 0

15.2.15. 21 + cos(1)− cos(8)

15.2.16. (ln 29− ln 2)/2

15.2.17. 2 ln 2 + π/4− 2

15.2.18. 1243/3

15.2.19. ln 2 + 11/3

15.2.20. 3 cos(1)− cos(2)− cos(4)− cos(8)

15.2.21. −10/3

15.3.1. no f

15.3.2. x4/4− y5/5
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15.3.3. no f

15.3.4. no f

15.3.5. y sin x

15.3.6. no f

15.3.7. xyz

15.3.8. 6

15.3.9. 1/e− sin 3

15.3.10. 1/
√

77−√3

15.4.1. 1

15.4.2. 0

15.4.3. 1/(2e)− 1/(2e7) + e/2− e7/2

15.4.4. 1/2

15.4.5. −1/6

15.4.6. (2
√

3−10
√

5+8
√

6)/3−2
√

2/5+1/5

15.4.7. 11/2− ln(2)

15.4.8. 2− π/2

15.4.9. −17/12

15.4.10. 0

15.4.11. −π/2

15.4.12. 12π

15.5.1. −1, 0

15.5.2. 0, a + b

15.5.3. (2b− a)/3, 0

15.5.4. 0, 1

15.5.5. −2π, 0

15.5.6. 0, 2π

15.6.1. 25
√

21/4

15.6.2. π
√

21

15.6.3. π(5
√

5− 1)/6

15.6.4. 4π
√

2

15.6.5. πa2/2

15.6.6. 2πa(a−√a2 − b2)

15.6.7. π((1 + 4a2)3/2 − 1)/6

15.6.8. 2π((1 + a2)3/2 − 1)/3

15.6.9. πa2 − 2a2

15.6.10. πa2
√

1 + k2/4

15.6.11. A
√

1 + a2 + b2

15.6.12. A
√

k2 + 1

15.6.13. 8a2

15.7.1. (0, 0, 3/8)

15.7.2. (11/20, 11/20, 3/10)

15.7.3. on center axis, h/3 above the base

15.7.4. 16

15.7.5. 7

15.7.6. −π

15.7.7. −137/120

15.7.8. −2/e

15.7.9. πb2(−4b4 − 3b2 + 6a2b2 + 6a2)/6

15.8.1. −3π

15.8.2. 0

15.8.3. −4π

15.8.4. A(p(c− b) + q(a− c) + a− b)

15.9.1. a2bc + ab2c + abc2

15.9.2. e2 − 2e + 7/2

15.9.3. 3

15.9.4. 384π/5

15.9.5. π/3

15.9.6. 10π

15.9.7. π/2




